785 resultados para rendering
Resumo:
One of the major challenges facing a present day game development company is the removal of bugs from such complex virtual environments. This work presents an approach for measuring the correctness of synthetic scenes generated by a rendering system of a 3D application, such as a computer game. Our approach builds a database of labelled point clouds representing the spatiotemporal colour distribution for the objects present in a sequence of bug-free frames. This is done by converting the position that the pixels take over time into the 3D equivalent points with associated colours. Once the space of labelled points is built, each new image produced from the same game by any rendering system can be analysed by measuring its visual inconsistency in terms of distance from the database. Objects within the scene can be relocated (manually or by the application engine); yet the algorithm is able to perform the image analysis in terms of the 3D structure and colour distribution of samples on the surface of the object. We applied our framework to the publicly available game RacingGame developed for Microsoft(R) Xna(R). Preliminary results show how this approach can be used to detect a variety of visual artifacts generated by the rendering system in a professional quality game engine.
Resumo:
The question of the authority of law has occupied and vexed the literature and philosophy of law for centuries. Law is something that characteristically implies obedience, but the precise nature of law’s authority remains contentious. The return to the writings of the Apostle Paul in contemporary philosophy, theology and jurisprudence begs attention in relation to the authority of law, and so this article will consider his analysis and critique of law with a focus on his Epistle to the Romans. It argues that Paul’s conception of the authority of law is explained on the basis that the law is from God, it externally sanctions obedience by virtue of the civil authorities, and it convicts internally in conscience. This triad is justified by the law of love (‘‘love your neighbor as yourself’’), and will be explained in relation to the natural law tradition as well as converse ideas in positivism. Hence, considering the reasoning of Paul in relation to traditional jurisprudential themes and the law of love provides a useful alternative analysis and basis for further investigation regarding the authority of law and the need for its obedience.
Resumo:
This paper attends to the idea of disconnection as a way of theorising people’s lived experience of social networking sites. Enrolling and extending a disconnective practice lens we suggest that the disconnective strategies of suspension and prevention are operational necessities for those we might see as the users and owners of sites such as Facebook. Indeed, our work demonstrates that disconnection in these contexts need not be associated only with modes of resistance and departure, but can also act as socioeconomic lubricant.
Resumo:
Elderly Jews were collected for deportation at the Heinemann Stiftung in 1941 and 1942; Israelitischer Verein fuer Altersversorgung udn Krankenpflege
Resumo:
Elderly Jews were collected for deportation at the Heinemann Stiftung in 1941 and 1942; Israelitischer Verein fuer Altersversorgung udn Krankenpflege
Resumo:
Elderly Jews were collected for deportation at the Heinemann Stiftung in 1941 and 1942; Israelitischer Verein fuer Altersversorgung udn Krankenpflege
Resumo:
Elderly Jews were collected for deportation at the Heinemann Stiftung in 1941 and 1942; Israelitischer Verein fuer Altersversorgung udn Krankenpflege
Resumo:
Instability in conventional haptic rendering destroys the perception of rigid objects in virtual environments. Inherent limitations in the conventional haptic loop restrict the maximum stiffness that can be rendered. In this paper we present a method to render virtual walls that are much stiffer than those achieved by conventional techniques. By removing the conventional digital haptic loop and replacing it with a part-continuous and part-discrete time hybrid haptic loop, we were able to render stiffer walls. The control loop is implemented as a combinational logic circuit on an field-programmable gate array. We compared the performance of the conventional haptic loop and our hybrid haptic loop on the same haptic device, and present mathematical analysis to show the limit of stability of our device. Our hybrid method removes the computer-intensive haptic loop from the CPU-this can free a significant amount of resources that can be used for other purposes such as graphical rendering and physics modeling. It is our hope that, in the future, similar designs will lead to a haptics processing unit (HPU).
Resumo:
In this paper we develop a multithreaded VLSI processor linear array architecture to render complex environments based on the radiosity approach. The processing elements are identical and multithreaded. They work in Single Program Multiple Data (SPMD) mode. A new algorithm to do the radiosity computations based on the progressive refinement approach[2] is proposed. Simulation results indicate that the architecture is latency tolerant and scalable. It is shown that a linear array of 128 uni-threaded processing elements sustains a throughput close to 0.4 million patches/sec.
Resumo:
In this paper, we explore a novel idea of using high dynamic range (HDR) technology for uncertainty visualization. We focus on scalar volumetric data sets where every data point is associated with scalar uncertainty. We design a transfer function that maps each data point to a color in HDR space. The luminance component of the color is exploited to capture uncertainty. We modify existing tone mapping techniques and suitably integrate them with volume ray casting to obtain a low dynamic range (LDR) image. The resulting image is displayed on a conventional 8-bits-per-channel display device. The usage of HDR mapping reveals fine details in uncertainty distribution and enables the users to interactively study the data in the context of corresponding uncertainty information. We demonstrate the utility of our method and evaluate the results using data sets from ocean modeling.
Resumo:
In gross motion of flexible one-dimensional (1D) objects such as cables, ropes, chains, ribbons and hair, the assumption of constant length is realistic and reasonable. The motion of the object also appears more natural if the motion or disturbance given at one end attenuates along the length of the object. In an earlier work, variational calculus was used to derive natural and length-preserving transformation of planar and spatial curves and implemented for flexible 1D objects discretized with a large number of straight segments. This paper proposes a novel idea to reduce computational effort and enable real-time and realistic simulation of the motion of flexible 1D objects. The key idea is to represent the flexible 1D object as a spline and move the underlying control polygon with much smaller number of segments. To preserve the length of the curve to within a prescribed tolerance as the control polygon is moved, the control polygon is adaptively modified by subdivision and merging. New theoretical results relating the length of the curve and the angle between the adjacent segments of the control polygon are derived for quadratic and cubic splines. Depending on the prescribed tolerance on length error, the theoretical results are used to obtain threshold angles for subdivision and merging. Simulation results for arbitrarily chosen planar and spatial curves whose one end is subjected to generic input motions are provided to illustrate the approach. (C) 2016 Elsevier Ltd. All rights reserved.