896 resultados para relaxin, prostate cancer, neuroendocrine differentiation, LNCaP, THP-1
Resumo:
Prostate cancer is a worldwide health concern. Pygopus2 (hPygo2) protein is required for growth in breast, ovarian, cervical and prostate cancer. hPygo2 expression is regulated by the Rb protein via the ETS factor Elf-1 in cervical and breast cancer. Additionally, the ETS family has confirmed roles in carcinogenesis and proliferation. The mechanism of hPygo2 expression has not been elucidated in prostate cancer. My hypothesis proposes that hPygo2 expression is regulated by Elf-1 bound to its promoter region. Prostate cancer cell lines were used to show protein levels of hPygo2, Elf-1 and ETS. ChIP assays confirmed varying binding capability of Elf-1 and ETS factors to the proximal promoter region between cell lines. Elf-1 knockdown experiments were performed, results show no change in hPygo2 protein levels but show reduction in 22Rv1 mRNA levels. These results suggest that Elf-1 might not be exclusively involved in the activation of Pygopus expression in prostate cancer.
Resumo:
The vertebrate $\beta$-galactoside-binding lectins galectin-1 and galectin-3 have been proposed to function in diverse cellular processes such as adhesion, proliferation, differentiation, and tumorigenesis. Experiments were initiated to further study the functional properties of these molecules. A prostate cancer cell line, LNCaP, was identified which expressed neither galectin. This line was stably transfected with cDNA for either galectin-1 or galectin-3. The resultant clones were used to study effects on critical cell processes. LNCaP cells expressing galectin-1 on the surface were found to bind more rapidly than control lines to the human extracellular matrix proteins laminin and fibronectin, although overall binding was not increased. To analyze effects on differentiation, LNCaP cells were studied which had either been transfected with galectin-1 or which had been induced to express endogenous galectin-1 by treatment with the differentiation agent sodium butyrate. In both cases, cells displayed a slower rate of growth and increased rate of apoptosis. A transient decrease in expression of prostate specific antigen was seen in the butyrate treated cells but not in the transfected cells. To investigate the role of galectins in the process of malignant transformation and progression, immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded sections of human prostate tissue, the premalignant lesion prostatic intraepithelial neoplasia, primary adenocarcinoma of the prostate, and foci of metastatic prostate cancer. Galectin-1 expression was relatively constant throughout in contrast to galectin-3 which demonstrated significantly less expression in primary and metastatic tumors. LNCaP cells transfected with galectin-3 cDNA displayed lower proliferation rates, increased spontaneous apoptosis, and G1 growth phase arrest compared to controls. Four of six galectin-3 lines tested were less tumorigenic in nude mice than controls. The following conclusions are drawn regarding the role of galectin-1 and galectin-3 expression in the context of prostate cancer: (1) galectin-1 may participate in the early stages of cancer cell adhesion to extracellular matrix proteins; (2) galectin-1 expression results in a differentiated phenotype and may contribute to differentiation induction by butyrate; (3) galectin-3 expression correlates inversely with prostate cell tumorigenesis and prostate cancer metastasis. ^
Resumo:
Histone variants seem to play a major role in gene expression regulation. In prostate cancer, H2A.Z and its acetylated form are implicated in oncogenes’ upregulation. SIRT1, which may act either as tumor suppressor or oncogene, reduces H2A.Z levels in cardiomyocytes, via proteasome-mediated degradation, and this mechanism might be impaired in prostate cancer cells due to sirtuin 1 downregulation. Thus, we aimed to characterize the mechanisms underlying H2A.Z and SIRT1 deregulation in prostate carcinogenesis and how they interact. We found that H2AFZ and SIRT1 were up- and downregulated, respectively, at transcript level in primary prostate cancer and high-grade prostatic intraepithelial neoplasia compared to normal prostatic tissues. Induced SIRT1 overexpression in prostate cancer cell lines resulted in almost complete absence of H2A.Z. Inhibition of mTOR had a modest effect on H2A.Z levels, but proteasome inhibition prevented the marked reduction of H2A.Z due to sirtuin 1 overexpression. Prostate cancer cells exposed to epigenetic modifying drugs trichostatin A, alone or combined with 5-aza-2’-deoxycytidine, increased H2AFZ transcript, although with a concomitant decrease in protein levels. Conversely, SIRT1 transcript and protein levels increased after exposure. ChIP revealed an increase of activation marks within the TSS region for both genes. Remarkably, inhibition of sirtuin 1 with nicotinamide, increased H2A.Z levels, whereas activation of sirtuin 1 by resveratrol led to an abrupt decrease in H2A.Z. Finally, protein-ligation assay showed that exposure to epigenetic modifying drugs fostered the interaction between sirtuin 1 and H2A.Z. We concluded that sirtuin 1 and H2A.Z deregulation in prostate cancer are reciprocally related. Epigenetic mechanisms, mostly histone post-translational modifications, are likely involved and impair sirtuin 1-mediated downregulation of H2A.Z via proteasome-mediated degradation. Epigenetic modifying drugs in conjunction with enzymatic modulators are able to restore the normal functions of sirtuin 1 and might constitute relevant tools for targeted therapy of prostate cancer patients
Resumo:
Androgen-sensitive prostate cancer cells turn androgen resistant through complex mechanisms that involve dysregulation of apoptosis. We investigated the role of antiapoptotic Bcl-xL in the progression of prostate cancer as well as the interactions of Bcl-xL with proapoptotic Bax and Bak in androgen-dependent and -independent prostate cancer cells. Immunohistochemical analysis was used to study the expression of Bcl-xL in a series of 139 prostate carcinomas and its association with Gleason grade and time to hormone resistance. Expression of Bcl-xL was more abundant in prostate carcinomas of higher Gleason grades and significantly associated with the onset of hormone-refractory disease. In vivo interactions of Bcl-xL with Bax or Bak in untreated and camptothecin-treated LNCaP and PC3 cells were investigated by means of coimmunoprecipitation. In the absence of any stimuli, Bcl-xL interacts with Bax and Bak in androgen-independent PC3 cells but only with Bak in androgen-dependent LNCaP cells. Interactions of Bcl-xL with Bax and Bak were also evidenced in lysates from high-grade prostate cancer tissues. In LNCaP cells treated with camptothecin, an inhibitor of topoisomerase I, the interaction between Bcl-xL and Bak was absent after 36 h, Bcl-xL decreased gradually and Bak increased coincidentally with the progress of apoptosis. These results support a model in which Bcl-xL would exert an inhibitory effect over Bak via heterodimerization. We propose that these interactions may provide mechanisms for suppressing the activity of proapoptotic Bax and Bak in prostate cancer cells and that Bcl-xL expression contributes to androgen resistance and progression of prostate cancer.
Resumo:
Objectives: Neuropeptides are important signal initiators in advanced prostate cancer, partially acting through activation of nuclear factor kappa B. Central to nuclear factor kappa B regulation is the ubiquitin-proteasome system, pharmacological inhibition of which has been proposed as an anticancer strategy. We investigated the putative role of the proteasome inhibitor bortezomib in neuropeptides signaling effects on prostate cancer cells. Methods: Human prostate cancer cell lines, LNCaP and PC-3, were used to examine cell proliferation, levels of proapoptotic (caspase-3, Bad) and cell cycle regulatory proteins (p53, p27, p21), as well as total and phosphorylated Akt and p44/42 mitogen-activated protein kinase proteins. Furthermore, 20S proteasome activity, subcellular localization of nuclear factor kappa B and transcription of nuclear factor kappa B target genes, interleukin-8 and vascular endothelial growth factor, were assessed. Results: Neuropeptides (endothelin-1, bombesin) increased cell proliferation, whereas bortezomib decreased proliferation and induced apoptosis, an effect maintained after cotreatment with neuropeptides. Bad, p53, p21 and p27 were downregulated by neuropeptides in PC-3, and these effects were reversed with the addition of bortezomib. Neuropeptides increased proteasomal activity and nuclear factor kappa B levels in PC-3, and these effects were prevented by bortezomib. Interleukin-8 and vascular endothelial growth factor transcripts were induced after neuropeptides treatment, but downregulated by bortezomib. These results coincided with the ability of bortezomib to reduce mitogen-activated protein kinase signaling in both cell lines. Conclusions: These findings are consistent with bortezomib-mediated abrogation of neuropeptides-induced proliferative and antiapoptotic signaling. Thus, the effect of the drug on the neuropeptides axis needs to be further investigated, as neuropeptide action in prostate cancer might entail involvement of the proteasome.
Resumo:
Financial support: This research was supported by grants to MDS from the NCI (2R01CA105304), the Canadian Institutes of Health Research (MOP79308) and the US Army Medical Research and Materiel Command Prostate Cancer Research Program (E81XWH-11-1-0551). Research by IJM’s group was supported by the Chief Scientist’s Office of the Scottish Government (ETM-258 and -382). We are grateful to Country Meadows Senior Men’s Golf Charity Classic for financial support of this research.
Resumo:
To prospectively assess quality of life (QoL) in patients receiving conformal radiation therapy (CRT) for prostate cancer.
Resumo:
After an average of 18-36 months under androgen suppression therapy by surgical castration, LHRH, and steroidal or non-steroidal antiandrogens, almost all patients with metastatic prostate cancer show PSA progression as a sign of androgen-independent but still androgen-sensitive tumor growth. Our understanding and the treatment of such castration-resistant prostate cancer has changed markedly. The introduction of new drugs like abiraterone and MDV3100 has shown that prostate cancer progression even in the"hormone-refractory" stage is driven by androgen receptor signaling. Based on this information the question of whether androgen deprivation therapy in castration-resistant prostate cancer should be continued or not is still of relevance. This review gives a critical overview of the literature and current guideline recommendations.
Resumo:
Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.
Resumo:
BACKGROUND The value of radical prostatectomy (RP) as an approach for very high-risk prostate cancer (PCa) patients is controversial. To examine the risk of 10-year cancer-specific mortality (CSM) and other-cause mortality (OCM) according to clinical and pathological characteristics of very high-risk cT3b/4 PCa patients treated with RP as the primary treatment option. METHODS In a multi-institutional cohort, 266 patients with very high-risk cT3b/4 PCa treated with RP were identified. All patients underwent RP and pelvic lymph-node dissection. Competing-risk analyses assessed 10-year CSM and OCM before and after stratification for age and Charlson comorbidity index (CCI). RESULTS Overall, 34 (13%) patients died from PCa and 73 (28%) from OCM. Ten-year CSM and OCM rates ranged from 5.6% to 12.9% and from 10% to 38%, respectively. OCM was the leading cause of death in all subgroups. Age and comorbidities were the main determinants of OCM. In healthy men, CSM rate did not differ among age groups (10-year CSM rate for ⩽64, 65-69 and ⩾70 years: 16.2%, 11.5% and 17.1%, respectively). Men with a CCI ⩾1 showed a very low risk of CSM irrespective of age (10-year CSM: 5.6-6.1%), whereas the 10-year OCM rates increased with age up to 38% in men ⩾70 years. CONCLUSION Very high-risk cT3b/4 PCa represents a heterogeneous group. We revealed overall low CSM rates despite the highly unfavorable clinical disease. For healthy men, CSM was independent of age, supporting RP even for older men. Conversely, less healthy patients had the highest risk of dying from OCM while sharing very low risk of CSM, indicating that this group might not benefit from an aggressive surgical treatment. Outcome after RP as the primary treatment option in cT3b/4 PCa patients is related to age and comorbidity status.
Resumo:
Localized prostate cancer (PCa) is a clinically heterogeneous disease, which presents with variability in patient outcomes within the same risk stratification (low, intermediate or high) and even within the same Gleason scores. Genomic tools have been developed with the purpose of stratifying patients affected by this disease to help physicians personalize therapies and follow-up schemes. This review focuses on these tissue-based tools. At present, four genomic tools are commercially available: Decipher™, Oncotype DX®, Prolaris® and ProMark®. Decipher™ is a tool based on 22 genes and evaluates the risk of adverse outcomes (metastasis) after radical prostatectomy (RP). Oncotype DX® is based on 17 genes and focuses on the ability to predict outcomes (adverse pathology) in very low-low and low-intermediate PCa patients, while Prolaris® is built on a panel of 46 genes and is validated to evaluate outcomes for patients at low risk as well as patients who are affected by high risk PCa and post-RP. Finally, ProMark® is based on a multiplexed proteomics assay and predicts PCa aggressiveness in patients found with similar features to Oncotype DX®. These biomarkers can be helpful for post-biopsy decision-making in low risk patients and post-radical prostatectomy in selected risk groups. Further studies are needed to investigate the clinical benefit of these new technologies, the financial ramifications and how they should be utilized in clinics.
Resumo:
The acquisition of neuroendocrine (NE) characteristics by prostate cancer (PCa) cells is closely related to tumour progression and hormone resistance. The mechanisms by which NE cells influence PCa growth and progression are not fully understood. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine involved in oncogenic processes, and MIF serum levels correlate with aggressiveness of PCa. Here, we investigated the regulation and the functional consequences of MIF expression during NE transdifferentiation of PCa cells. NE differentiation (NED) of LNCaP cells, initiated either by increasing intracellular levels of cAMP or by culturing cells in an androgen-depleted medium, was associated with markedly increased MIF release. Yet, intracellular MIF protein and mRNA levels and MIF gene promoter activity decreased during NED of LNCaP cells, suggesting that NED favours MIF release despite decreasing MIF synthesis. Adenoviral-mediated forced MIF expression in NE-differentiated LNCaP cells increased cell proliferation without affecting the expression of NE markers. Addition of exogenous recombinant MIF to LNCaP and PC-3 cells stimulated the AKT and ERK1/2 signalling pathways, the expression of genes involved in PCa, as well as proliferation and resistance to paclitaxel and thapsigargin-induced apoptosis. Altogether, these data provide evidence that increased MIF release during NED in PCa may facilitate cancer progression or recurrence, especially following androgen deprivation. Thus, MIF could represent an attractive target for PCa therapy.
Resumo:
The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.
Resumo:
There are some unusual histologic variants of prostate carcinoma, including mucinous, signet-ring cells, and ductal carcinomas that can metastasize in a problematic way and simulate lung, colorectal, or bladder primaries. Currently, antibodies that are organ-specific have been used in the routine surgical pathology practice. Our aim is to study the profile of expression of Cdx2, thyroid transcription factor 1 (TTF1), and cytokeratin 20 (CK20) in prostate cancer with unusual histologic finding. Twenty-nine prostate adenocarcinomas with unusual histologic findings were submitted to immunohistochemistry with prostate-specific antigen (PSA), CK20, Cdx2, and TTF1 antibodies. There were 7 mucinous, 5 ductal, 2 signet-ring cells, and 15 usual acinar adenocarcinomas with focal mucinous differentiation. To compare the results with usual acinar adenocarcinomas, we studied 10 primary and their respective lymph node metastases in a tissue microarray, 2 unusual metastatic adenocarcinomas, and 6 usual acinar high-grade carcinomas. For tumors with special histologic finding, Cdx2 was expressed by 9 (31.0%) mucinous, signet-cell, or with focal mucinous differentiation. Thyroid transcription factor I was moderately positive in mucinous differentiation areas of 2 (6.9%) adenocarcinomas. Cytokeratin 20 was expressed by 9 (31.0%) tumors, among them, 3 ductal adenocarcinomas. Prostate-specific antigen was positive in 28 (96.6%) cases and negative in I ductal adenocarcinoma. There was only I worrisome ductal adenocarcinoma that was strongly CK20 positive and PSA negative. Almost one third of mucinous prostate carcinomas express Cdx2. Cytokeratin 20 can be positive also in one third of prostate carcinomas, especially the ductal type. Pathologist should be alert when evaluating immumohistochemical profiles of unusual histologic findings of prostate cancer, mostly in distant sites. (C) 2008 Elsevier Inc. All rights reserved.