968 resultados para relatività, stelle di neutroni, nane bianche


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi viene affrontato il problema della stabilità delle strutture stellari da un punto di vista relativistico. La stella è approssimata ad un fluido perfetto a simmetria sferica, e le equazioni che ne governano la struttura vengono ricavate grazie alle risoluzione delle equazioni di campo della relatività generale in questo caso particolare. L'approssimazione di fluido perfetto permette anche di ricavare un'equazione di stato che lega densità di energia e pressione tramite un parametro, detto parametro di rigidità. Un'analisi del comportamento della materia al variare della densità consente di stabilire l'andamento di questo parametro, mentre uno studio delle piccole oscillazioni radiali della stella permette di stabilire quali sono i valori del parametro che consentono un equilibrio stabile. La stabilità risulta possibile in due differenti intervalli di densità, che corrispondono ai due tipici stadi finali dell'evoluzione stellare: nana bianca e stella di neutroni. Grazie alle equazioni che descrivono la struttura stellare è possibile stabilire, nei due intervalli di densità, quale sia il valore che la massa della stella non può superare: si ricavano il limite di Chandrasekhar e il limite di Oppenheimer-Volkoff. Infine viene mostrato come la relatività generale imponga un limite assoluto alla stabilità di una distribuzione di materia, sostenuta da una qualsiasi forza della natura: superato questo confine, la materia non può fare altro che collassare in un buco nero.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Con la presente Tesi si vuole trattare lo Stato Degenere della materia. Nella prima parte si presenteranno le caratteristiche fisiche principali: limite di non degenerazione, differenze tra bosoni e fermioni, equazioni di stato e distribuzioni di velocità. Nella seconda parte si introdurranno i risvolti astrofisici più interessanti: pressione negli interni stellari, nane bianche, stelle di neutroni e Supernovae di tipo Ia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi si è studiato uno dei principali processi nelle stelle responsabili della nucleosintesi degli elementi pesanti dopo il 56Fe, il processo-s. In particolare sono state illustrate le sorgenti di neutroni che alimentano questo processo e si è analizzata la reazione 22Ne (α,n) 25Mg. Per costruire un valido modello matematico di questo processo è necessario conoscere in maniera accurata il reaction rate di questa reazione. Conseguentemente è necessario conoscere la sezione d'urto di tale reazione in maniera molto accurata. Sono stati condotti diversi esperimenti nel tentativo di valutare la sezione d'urto per via diretta, facendo collidere un fascio di particelle α su un campione di 22Ne. Queste rilevazioni hanno dato esiti non soddisfacenti nell'intervallo di energie riguardanti il processo-s, in quanto, a causa di disturbi dovuti al fondo di raggi cosmici e alla barriera Coulombiana, non è stato possibile osservare risonanze per valori di energie delle particelle α minori di (832± 2) keV. Per colmare la mancanza di dati sperimentali si è deciso di studiare gli stati eccitati del nucleo composto 26Mg tramite la reazione inversa 25Mg+n alle facility n_TOF, situata al CERN, e GELINA al IRMM. Le misure effettuate hanno mostrato diverse risonanze al di sotto di (832±2) keV, compatibili con le spin-parità di 22Ne e α. In seguito è stato stimato il loro contributo al reaction rate e i risultati hanno mostrato che per temperature tipiche di stelle massive il contributo di queste risonanze è trascurabile ma risulta di grande rilevanza alle temperature tipiche delle stelle appartenenti al ramo asintotico delle giganti (AGB).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una stella non è un sistema in "vero" equilibrio termodinamico: perde costantemente energia, non ha una composizione chimica costante nel tempo e non ha nemmeno una temperatura uniforme. Ma, in realtà, i processi atomici e sub-atomici avvengono in tempi così brevi, rispetto ai tempi caratteristici dell'evoluzione stellare, da potersi considerare sempre in equilibrio. Le reazioni termonucleari, invece, avvengono su tempi scala molto lunghi, confrontabili persino con i tempi di evoluzione stellare. Inoltre il gradiente di temperatura è dell'ordine di 1e-4 K/cm e il libero cammino medio di un fotone è circa di 1 cm, il che ci permette di assumere che ogni strato della stella sia uno strato adiabatico a temperatura uniforme. Di conseguenza lo stato della materia negli interni stellari è in una condizione di ``quasi'' equilibrio termodinamico, cosa che ci permette di descrivere la materia attraverso le leggi della Meccanica Statistica. In particolare lo stato dei fotoni è descritto dalla Statistica di Bose-Einstein, la quale conduce alla Legge di Planck; lo stato del gas di ioni ed elettroni non degeneri è descritto dalla Statistica di Maxwell-Boltzmann; e, nel caso di degenerazione, lo stato degli elettroni è descritto dalla Statistica di Fermi-Dirac. Nella forma più generale, l'equazione di stato dipende dalla somma dei contributi appena citati (radiazione, gas e degenerazione). Vedremo prima questi contributi singolarmente, e dopo li confronteremo tra loro, ottenendo delle relazioni che permettono di determinare quale legge descrive lo stato fisico di un plasma stellare, semplicemente conoscendone temperatura e densità. Rappresentando queste condizioni su un piano $\log \rho \-- \log T$ possiamo descrivere lo stato del nucleo stellare come un punto, e vedere in che stato è la materia al suo interno, a seconda della zona del piano in cui ricade. È anche possibile seguire tutta l'evoluzione della stella tracciando una linea che mostra come cambia lo stato della materia nucleare nelle diverse fasi evolutive. Infine vedremo come leggi quantistiche che operano su scala atomica e sub-atomica siano in grado di influenzare l'evoluzione di sistemi enormi come quelli stellari: infatti la degenerazione elettronica conduce ad una massa limite per oggetti completamente degeneri (in particolare per le nane bianche) detta Massa di Chandrasekhar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ci sono due luoghi astronomici nella Vita Nova con i quali Dante calcola il tempo in cui si verificano gli episodi principali della storia narrata. Queste nozioni scientifiche contengono implicito un significato astrologico, connesso all’influsso del segno zodiacale dei Gemelli, configurazione astrologica che torna ad ogni anniversario. I Gemelli è il segno zodiacale di Dante, come il poeta afferma nella Commedia: l’invocazione del pellegrino alla costellazione omonima, alla cui influenza egli deve il suo ingegno (Par. XXII, 112-123), riconosce all’astrologia, attraverso il motivo delle qualità personali instillate dagli astri, il compito di esaltare il suo ruolo di poeta divinamente ispirato. L’importanza di questo segno è evidente nella Vita Nova: I Gemelli è probabilmente il segno zodiacale di Beatrice, come il poeta sembra suggerire in VN 1, 3 [II, 2], se si considera il fatto che, al verificarsi del primo incontro tra Dante e Beatrice, la fanciulla non aveva ancora iniziato il suo nono anno di vita («quasi»). Il colore dell’abito di Beatrice, «sanguigno» (VN 1, 4; II, 3), può riferirsi al temperamento della donna, e confermare così la sua appartenenza a quel segno. In seguito, la buona influenza del segno torna in VN 19, 4 [XXIX, 1], il capitolo dedicato alla morte di Beatrice. La donna muore l’8 giugno 1290, così anche la sua morte accade in Gemelli. Tutti gli eventi della Vita Nova sono garantiti dalle stelle, e Dante nel «libello» non fa che esaltare l’importanza dell’azione dei cieli influenti sulla vita umana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi è incentrata sullo studio del flusso di neutroni e della funzione di risoluzione del progetto n_TOF al CERN di Ginevra. Dopo aver ricordato le motivazioni scientifiche e tecnologiche che stanno alla base di questo progetto di collaborazione internazionale, si trattano sommariamente alcune delle più importanti applicazioni della fisica neutronica e si descrive la facility di Ginevra. Nella parte finale del lavoro si presenta una misura di precisione ottenuta dal flusso di neutroni utilizzato nell'esperimento n_TOF nel 2012, la cui conoscenza è di fondamentale importanza per la misura di sezioni d'urto di reazioni indotte da neutroni. L'esperimento n_TOF ha proprio lo scopo di misurare sezioni d'urto di reazioni indotte da neutroni, in particolare reazioni di fissione e cattura neutronica. Ad n_TOF si utilizza un fascio di protoni, accelerato a 20 GeV dal ProtoSincrotrone del CERN, per crearne due di neutroni, uno verticale e uno orizzontale, tramite spallazione nucleare indotta su un bersaglio di Piombo. Dalle analisi dei dati si deduce come questo studio possa essere maggiormente ottimizzato migliorando la funzione di risoluzione energetica dei neutroni, attraverso simulazioni Monte Carlo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La rivelazione dei neutroni gioca un ruolo fondamentale sia nel campo della fisica nucleare di base che in diversi ambiti applicativi quali la produzione di energia in reattori a fissione, la sicurezza nazionale alle frontiere, la terapia e la diagnostica mediche. Negli anni passati la rivelazione di neutroni di bassa energia (nell'intervallo termico) si è basata principalmente sull'utilizzo di contatori proporzionali a $^3$He. Il grosso vantaggio di questi strumenti è la loro quasi totale inefficienza nella rivelazione di radiazione elettromagnetica, consentendo una caratterizzazione pulita dei flussi neutronici di bassa energia, anche quando, come spesso succede, sono accompagnati da un intenso fondo di raggi X e raggi gamma. La scarsa disponibilità di $^3$He ed il conseguente incremento del suo costo hanno stimolato, negli ultimi anni, numerosi programmi di sviluppo di nuovi rivelatori per neutroni termici in grado di rimpiazzare i troppo costosi contatori a $^3$He. In questo contesto si sono sviluppati da una parte il progetto ORIONE/HYDE dell'Istituto Nazionale di Fisica Nucleare (INFN), che punta allo sviluppo di scintillatori organici a matrice siliconica in grado di rivelare sia neutroni veloci che termici, dall'altra l'applicazione di tali sviluppi ad attività connesse con il Progetto SPES nell'ambito del PRIN intitolato Sviluppo di Rivelatori e tecniche d'analisi per la sperimentazione con i fasci radioattivi dei Laboratori Nazionali dell'INFN, con particolare riferimento a SPES. All'interno di una matrice scintillante organica (ricca quindi di nuclei di Idrogeno e Carbonio) opportunamente drogata per favorire il processo di scintillazione, viene disperso un ulteriore dopante ad alta sezione d'urto di cattura neutronica (tipicamente $^{10}$B o $^6$Li). Questo scintillatore risulta sensibile alla radiazione neutronica veloce che viene rivelata tramite i processi di urto elastico ed il successivo rinculo dei nuclei che causa l'emissione di luce di scintillazione. Inoltre grazie alle grandi sezioni d'urto dei processi di cattura neutronica da parte del materiale dopante e la successiva emissione di particelle cariche anche la sensibilità ai neutroni di bassa energia (lenti e termici) viene garantita. La matrice utilizzata (polifenil-dimetil silossano) ha ottime proprietà meccaniche e, a differenza di altri materiali utilizzati per la realizzazione di scintillatori per neutroni, non risulta tossica o dannosa per l'ambiente. Inoltre il costo del materiale utilizzato è notevolmente competitivo rispetto alle alternative attualmente in commercio. In questo lavoro di tesi verranno caratterizzati alcuni di questi nuovi scintillatori drogati con $^6$Li. Verrà analizzata la loro risposta in termini di resa di luce quando esposti a flussi di particelle cariche e raggi gamma e a flussi neutronici di bassa energia. I risultati verranno paragonati a quelli ottenuti con uno scintillatore commerciale standard a matrice vetrosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo della tesi è di illustrare le principali tecniche spettroscopiche per l'indagine della materia mediante l'uso dei neutroni come sonda, con particolare attenzione rivolta alla diffusione anelastica su campioni monocristallini. Nel testo vengono esposti i processi di produzione dei neutroni tramite spallazione, fissione e fusione nucleare, e si descrive il reattore nucleare dell'Institut Laue-Langevin (ILL) di Grenoble. Inoltre, viene presentato uno studio della curva di dispersione dei modi vibrazionali acustici di un campione monocristallino di β-stagno a temperatura ambiente, effettuato presso l'ILL tramite un diffrattometro a triplo-asse. I risultati sono confrontati con i modelli teorici disponibili (S. H. Chen) e con dati sperimentali noti (J. M. Rowe).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viaggiare da un punto all'altro dell'universo muovendosi in uno spazio-tempo piatto richiede tempi talmente colossali da risultare impossibile per la nostra razza; pertanto, un viaggio interstellare potrebbe essere realizzato solo per mezzo di topologie relativistiche in grado di accorciare la distanza fra i punti dell'universo. Dopo aver dato una serie di motivazioni per cui i buchi neri ed il ponte di Einstein-Rosen non sono adatti ad essere impiegati viene introdotta una particolare classe di soluzioni, presentata per la prima volta da Michael S. Morris e Kip S. Thorne, delle equazioni di Einstein: essa descrive wormholes i quali, almeno in linea di principio, risultano attraversabili dagli esseri umani in quanto non presentano un orizzonte degli eventi sulla gola. Quest'ultima proprietà, insieme alle equazioni di campo di Einstein, pone dei vincoli piuttosto estremi sul tipo di materiale in grado di dar luogo alla curvatura spazio-temporale del wormhole: nella gola del wormhole la materia deve possedere una tensione radiale di enorme intensità, dell'ordine di quella presente nel centro delle stelle di neutroni più massive per gole con un raggio di appena qualche kilometro. Inoltre, questa tensione dev'essere maggiore della densità di energia del materiale: ad oggi non si conosce alcun materiale con quest'ultima proprietà, la quale viola entrambe le "condizioni sull'energia" alla base di teoremi molto importanti e verificati della relatività generale. L'esistenza di questa materia non può essere esclusa a priori, visto che non esiste prova sperimentale o matematica della sua irrealisticità fisica, ma non essendo mai stata osservata è importante assicurarsi di impiegarne il meno possibile nel wormhole: questo ci porterà a mostrare che i wormholes in cui il materiale esotico presenta una densità di energia negativa per gli osservatori statici sono i più adatti al viaggio interstellare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I neutroni possono essere classificati in base all'energia e per anni lo studio sui neutroni si è focalizzato verso le basse energie, ottenendo informazioni fondamentali sulle reazioni nucleari. Lo studio per i neutroni ad alta energia (E >20 MeV) ha ultimamente suscitato un vivo interesse, poiché i neutroni hanno un ruolo fondamentale in una vasta gamma di applicazioni: in campo medico, industriale e di radioprotezione. Tuttavia le informazioni sperimentali (sezioni d'urto) in nostro possesso, in funzione dell'energia dei neutroni, sono limitate, considerando che richiedono la produzione di fasci con un ampio spettro energetico e delle tecniche di rivelazione conforme ad essi. La rivelazione dei neutroni avviene spesso attraverso il processo di scintillazione che consiste nell'eccitazione e diseccitazione delle molecole che costituiscono il rivelatore. Successivamente, attraverso i fotomoltiplicatori, la luce prodotta viene raccolta e convertita in impulsi energetici che vengono registrati ed analizzati. Lo scopo di questa tesi è quello di testare quale sia la migliore configurazione sperimentale di un rivelatore costituito da scintillatori e fotomoltiplicatori per quanto riguarda la raccolta di luce, utilizzando una simulazione Monte Carlo per riprodurre le proprietà ottiche di un rivelatore per misure di flusso di un rivelatore ad alta energia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le Millisecond Pulsar (MSP) sono stelle di neutroni magnetizzate e rapidamente rotanti, prodotte da fenomeni di accrescimento di massa e momento angolare da parte di una stella compagna. Secondo lo scenario canonico di formazione, è atteso che la stella compagna sia una nana bianca di He, privata del suo inviluppo esterno. Tuttavia, in un numero crescente di casi, la compagna della MSP è stata identificata in una stella di piccola massa, non degenere, ancora soggetta a fenomeni di perdita di massa. Queste MSP vengono comunemente chiamate ''Black-Widow'' (BW) e sono l'oggetto di studio di questa tesi. In particolare, l'obiettivo di questo lavoro è l'identificazione della controparte ottica della PSR J1953+1846A nell'ammasso globulare M71. Essa è classificata come BW, data la piccola massa della compagna (~0.032 Msun) e il segnale radio eclissato per circa il 20% dell'orbita. Tramite l'uso di osservazioni ad alta risoluzione con il telescopio spaziale Hubble, abbiamo identificato, in una posizione compatibile con la MSP, un debole oggetto, la cui variabilità mostra una periodicità coerente con quella del sistema binario, noto dalla banda radio. La struttura della curva di luce è indicativa della presenza di fenomeni di irraggiamento della superficie stellare esposta all'emissione della MSP e dalla sua analisi abbiamo stimato alcuni parametri fisici della compagna, come la temperatura superficiale ed il fattore di riempimento del lobo di Roche. Dal confronto tra le curve di luce X ed ottica, abbiamo inoltre trovato evidenze a favore della presenza di shocks nelle regioni intrabinarie. Abbiamo quindi evidenziato l'estrema similarità di questo sistema con l'unica compagna di BW attualmente nota in un ammasso globulare: PSR J1518+0204C. Infine, abbiamo effettuato uno studio preliminare delle controparti ottiche delle sorgenti X dell'ammasso. Abbiamo così identificato due AGN che, insieme ad altre due galassie, hanno permesso la determinazione del moto proprio assoluto delle stelle dell'ammasso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tra tutti i fenomeni naturali osservabili, ne era presente uno particolarmente interessante e con il quale si aveva diretto contatto quotidianamente: la gravità. Dopo le innumerevoli osservazioni astronomiche effettuate da Galileo, fu Newton nel diciassettesimo secolo a capire che il moto dei pianeti era governato dalle medesime leggi che descrivono la caduta dei gravi sulla Terra e fu quindi lui che ci fornì una prima teoria della gravità con la quale si spiegarono le orbite dei pianeti con ottima precisione. Grazie al contributo di Einstein, la teoria si rinnovò e si arricchì, ma rimase pur sempre lontana dall' essere completa, tant' è che ancora oggi sono presenti molte domande a cui non siamo in grado di rispondere. In questo articolo ci occuperemo di tali quesiti, provando a formulare una teoria che sia in accordo con le attuali evidenze sperimentali. Nella prima parte, tratteremo le ragioni che hanno spinto i ricercatori ad introdurre le nuove teorie della gravità f(R); in particolare vedremo la peculiarità delle curve di rotazione delle galassie e perché ci sia il bisogno di tirare in ballo la materia oscura. Discuteremo anche alcuni problemi derivanti dall' evoluzione cosmica e altre incongruenze riguardanti la stabilità delle stelle di neutroni. In seguito mostreremo come ricavare l' equazione di Einstein partendo dai principi variazionali di Hamilton, e estenderemo tale ragionamento con lo scopo di ottenere un' equazione corrispondente ad una gravità modificata. Infine, verranno introdotte le teorie della gravità f(R), per mezzo delle quali cercheremo di discutere alcune possibili spiegazioni alle problematiche mosse nella parte introduttiva.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La disintegrazione dei nuclei atomici si traduce in una emissione di vari tipi di radiazioni e particelle tra cui neutroni e raggi gamma. La rivelazione dei neutroni comporta l’utilizzo di rivelatori a scintillazione e tecniche di analisi per poter identificare e ottenere informazioni sull’energia dei neutroni. Il processo di scintillazione per la rivelazione dei neutroni consiste nell’interazione con i nuclei del materiale e successiva emissione luminosa dovuta a ionizzazione degli atomi del rivelatore. La luce e in seguito convertita in impulsi elettrici, i quali possono essere analizzati con opportune tecniche. L’emissione di neutroni `e accompagnata da emissione di raggi gamma e quindi `e necessario identificare i neutroni. Rivelatori basati su scintillatori organici vengono spesso impiegati nella spettrometria neutronica ad energie superiori di 0.5 MeV ed in una vasta gamma di applicazioni come la medicina, l’industria e la radioprotezione. La rilevazione dei neutroni `e molto importante nello studio delle reazioni nucleari di bassa energia e nello studio della materia nucleare lontano dalla valle di stabilita. In questo lavoro abbiamo studiato tre algoritmi: Zero Crossing, Charge Comparison e Pulse Gradient Analysis. Questi algoritmi sono stati in seguito applicati all’analisi di un insieme di dati provenienti dalla reazione nucleare 7Li(p,n)7Be. E stato utilizzato uno scintillatore organico liquido BC501. Si `e effettuato un confronto tra le varie tecniche utilizzate per determinare il grado di discriminazione ottenuto con ognuna di esse. I risultati ottenuti permettono di decidere in seguito quale algoritmo si presta ad essere utilizzato anche in altri esperimenti futuri. Il metodo Pulse Gradient Analysis `e risultato il piu` prometente, essendo anche possibile l’utilizzo on-line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guidata dall'interesse per lo studio della fissione nucleare, per molto tempo la ricerca nel campo dei neutroni si è concentrata su energie medio-basse (E<20 MeV) mentre per la regione a più alte energie le informazioni risultavano scarse o mancanti. Recentemente, invece, si è sviluppato un nuovo interesse per i Neutroni di Alta Energia, utilizzabili nelle terapie mediche per la cura di tumori, e di grande importanza per la radioprotezione e la trasmutazione delle scorie radioattive derivanti da produzione di energia nucleare. Queste applicazioni richiedono precisi fasci di neutroni quasi-monoenergetici, con energie dai 20 a qualche centinaia di MeV, servono perciò misurazioni intese a determinare le caratteristiche del fascio e atte a ottenere valori precisi della sezione d'urto relativa ai processi innescati da neutroni veloci. La sezione d'urto di un certo processo nucleare si deduce dalla misura del numero di eventi acquisiti per unità di tempo da un rivelatore, conoscendo l'efficienza di questo, l'intensità del fascio che incide nel bersaglio e le caratteristiche del target. Diventa, quindi, determinante la conoscenza dell'intensità del fascio dei neutroni, anche nel caso di un intervallo energetico ampio, come quello prodotto al CERN dalla facility n_TOF, che possiede energie che vanno dal meV al GeV. Sulla base di queste motivazioni, in questo lavoro di tesi, si vuole proporre un prototipo semplice di rivelatore per Neutroni di Alta Energia e si presenta uno studio preliminare del primo test sotto fascio, focalizzando l'attenzione sulla massima energia misurabile.