989 resultados para reference gene
Resumo:
Phylogenomic databases provide orthology predictions for species with fully sequenced genomes. Although the goal seems well-defined, the content of these databases differs greatly. Seven ortholog databases (Ensembl Compara, eggNOG, HOGENOM, InParanoid, OMA, OrthoDB, Panther) were compared on the basis of reference trees. For three well-conserved protein families, we observed a generally high specificity of orthology assignments for these databases. We show that differences in the completeness of predicted gene relationships and in the phylogenetic information are, for the great majority, not due to the methods used, but to differences in the underlying database concepts. According to our metrics, none of the databases provides a fully correct and comprehensive protein classification. Our results provide a framework for meaningful and systematic comparisons of phylogenomic databases. In the future, a sustainable set of 'Gold standard' phylogenetic trees could provide a robust method for phylogenomic databases to assess their current quality status, measure changes following new database releases and diagnose improvements subsequent to an upgrade of the analysis procedure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The selection of reference genes used for data normalization to quantify gene expression by real-time PCR amplifications (qRT-PCR) is crucial for the accuracy of this technique. In spite of this, little information regarding such genes for qRT-PCR is available for gene expression analyses in pathogenic fungi. Thus, we investigated the suitability of eight candidate reference genes in isolates of the human dermatophyte Trichophyton rubrum subjected to several environmental challenges, such as drug exposure, interaction with human nail and skin, and heat stress. The stability of these genes was determined by geNorm, NormFinder and Best-Keeper programs. The gene with the most stable expression in the majority of the conditions tested was rpb2 (DNA-dependent RNA polymerase II), which was validated in three T. rubrum strains. Moreover, the combination of rpb2 and chs1 (chitin synthase) genes provided for the most reliable qRT-PCR data normalization in T. rubrum under a broad range of biological conditions. To the best of our knowledge this is the first report on the selection of reference genes for qRT-PCR data normalization in dermatophytes and the results of these studies should permit further analysis of gene expression under several experimental conditions, with improved accuracy and reliability.
Resumo:
The dataset contains raw data (quantification cycle) for a study which determined the most suitable hepatic reference genes for normalisation of qPCR data orginating from juvenile Atlantic salmon (14 days) exposed to 14 and 22 degrees C. These results will be useful for anyone wanting to study the effects of climate change/elevated temperature on reproductive physiology of fish (and perhaphs other vertebrates).
Resumo:
The dataset contains raw data (quantification cycle) for a study which determined the most suitable hepatic reference genes for normalisation of qPCR data orginating from adult (entire reproductive season) Atlantic salmon (14 days) exposed to 14 and 22 degrees C. These results will be useful for anyone wanting to study the effects of climate change/elevated temperature on reproductive physiology of fish (and perhaphs other vertebrates). In addition, a target gene (vitellogenin) has normalised using an inappropriate and an 'ideal' reference gene to demonstrate the consequences of using an unstable reference gene for normalisation. For the adult experiment, maiden and repeat adult females were held at the Salmon Enterprises of Tasmania (SALTAS) Wayatinah Hatchery (Tasmania, Australia) at ambient temperature and photoperiod in either 200 (maidens) or 50 (repeats) m3 circular tanks at stocking densities of 12-18, and 24-36 kg m-3 for maidens and repeats, respectively, until transfered to the experimental tanks.
Resumo:
Funding: This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 613960 (SMARTBEES) (http://www.smartbees-fp7.eu/) and Veterinary Medicines Directorate, Department for Environment Food & Rural Affairs (Project # VM0517) (https://www.gov.uk/government/organisations/veterinary-medicines-directorate). CHM was supported by a Biosciences Knowledge Transfer Network Biotechnology and Biological Sciences Research Council (KTN-BBSRC CASE) Studentship (BB/L502467/1) (http://www.bbsrc.ac.uk/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We gratefully acknowledge Mr Sebastian Bacz’s expert help and advice with beekeeping.
Resumo:
Today, quantitative real-time PCR is the method of choice for rapid and reliable quantification of mRNA transcription. However, for an exact comparison of mRNA transcription in different samples or tissues it is crucial to choose the appropriate reference gene. Recently glyceraldehyde 3-phosphate dehydrogenase and P-actin have been used for that purpose. However, it has been reported that these genes as well as alternatives, like rRNA genes, are unsuitable references, because their transcription is significantly regulated in various experimental settings and variable in different tissues. Therefore, quantitative real-time PCR was used to determine the mRNA transcription profiles of 13 putative reference genes, comparing their transcription in 16 different tissues and in CCRF-HSB-2 cells stimulated with 12-O-tetradecanoylphorbol-13-acetate and ionomycin. Our results show that Classical reference genes are indeed unsuitable, whereas the RNA polymerase II gene was the gene with the most constant expression in different tissues and following stimulation in CCRF-HSB-2 cells. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Background: The importance of appropriate normalization controls in quantitative real-time polymerase chain reaction (qPCR) experiments has become more apparent as the number of biological studies using this methodology has increased. In developing a system to study gene expression from transiently transfected plasmids, it became clear that normalization using chromosomally encoded genes is not ideal, at it does not take into account the transfection efficiency and the significantly lower expression levels of the plasmids. We have developed and validated a normalization method for qPCR using a co-transfected plasmid.Results: The best chromosomal gene for normalization in the presence of the transcriptional activators used in this study, cadmium, dexamethasone, forskolin and phorbol-12-myristate 13-acetate was first identified. qPCR data was analyzed using geNorm, Normfinder and BestKeeper. Each software application was found to rank the normalization controls differently with no clear correlation. Including a co-transfected plasmid encoding the Renilla luciferase gene (Rluc) in this analysis showed that its calculated stability was not as good as the optimised chromosomal genes, most likely as a result of the lower expression levels and transfection variability. Finally, we validated these analyses by testing two chromosomal genes (B2M and ActB) and a co-transfected gene (Rluc) under biological conditions. When analyzing co-transfected plasmids, Rluc normalization gave the smallest errors compared to the chromosomal reference genes.Conclusions: Our data demonstrates that transfected Rluc is the most appropriate normalization reference gene for transient transfection qPCR analysis; it significantly reduces the standard deviation within biological experiments as it takes into account the transfection efficiencies and has easily controllable expression levels. This improves reproducibility, data validity and most importantly, enables accurate interpretation of qPCR data. © 2010 Jiwaji et al; licensee BioMed Central Ltd.
Resumo:
This work was supported by a Knowledge Transfer Network BBSRC Industrial Case (#414 BB/L502467/1) studentship in association Zoetis Inc.
Resumo:
2011
Resumo:
For obtaining accurate and reliable gene expression results it is essential that quantitative real-time RT-PCR (qRT-PCR) data are normalized with appropriate reference genes. The current exponential increase in postgenomic studies on the honey bee, Apis mellifera, makes the standardization of qRT-PCR results an important task for ongoing community efforts. For this aim we selected four candidate reference genes (actin, ribosomal protein 49, elongation factor 1-alpha, tbp-association factor) and used three software-based approaches (geNorm, BestKeeper and NormFinder) to evaluate the suitability of these genes as endogenous controls. Their expression was examined during honey bee development, in different tissues, and after juvenile hormone exposure. Furthermore, the importance of choosing an appropriate reference gene was investigated for two developmentally regulated target genes. The results led us to consider all four candidate genes as suitable genes for normalization in A. mellifera. However, each condition evaluated in this study revealed a specific set of genes as the most appropriated ones.
Resumo:
The genera Cochliomyia and Chrysomya contain both obligate and saprophagous flies, which allows the comparison of different feeding habits between closely related species. Among the different strategies for comparing these habits is the use of qPCR to investigate the expression levels of candidate genes involved in feeding behavior. To ensure an accurate measure of the levels of gene expression, it is necessary to normalize the amount of the target gene with the amount of a reference gene having a stable expression across the compared species. Since there is no universal gene that can be used as a reference in functional studies, candidate genes for qPCR data normalization were selected and validated in three Calliphoridae (Diptera) species, Cochliomyia hominivorax Coquerel, Cochliomyia macellaria Fabricius, and Chrysomya albiceps Wiedemann . The expression stability of six genes ( Actin, Gapdh, Rp49, Rps17, α -tubulin, and GstD1) was evaluated among species within the same life stage and between life stages within each species. The expression levels of Actin, Gapdh, and Rp49 were the most stable among the selected genes. These genes can be used as reliable reference genes for functional studies in Calliphoridae using similar experimental settings.
Resumo:
BACKGROUND: The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated.We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system - specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. RESULTS: We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the normalization process. CONCLUSIONS: In the rat SNI model, we validated and ranked Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 and 18S as good reference genes in the spinal cord. In the DRG, 18S did not fulfill stability criteria. The combination of any two stable reference genes was sufficient to provide an accurate normalization.
Resumo:
The aim of our work was to show how a chosen normal-isation strategy can affect the outcome of quantitative gene expression studies. As an example, we analysed the expression of three genes known to be upregulated under hypoxic conditions: HIF1A, VEGF and SLC2A1 (GLUT1). Raw RT-qPCR data were normalised using two different strategies: a straightforward normalisation against a single reference gene, GAPDH, using the 2(-ΔΔCt) algorithm and a more complex normalisation against a normalisation factor calculated from the quantitative raw data from four previously validated reference genes. We found that the two different normalisation strategies revealed contradicting results: normalising against a validated set of reference genes revealed an upregulation of the three genes of interest in three post-mortem tissue samples (cardiac muscle, skeletal muscle and brain) under hypoxic conditions. Interestingly, we found a statistically significant difference in the relative transcript abundance of VEGF in cardiac muscle between donors who died of asphyxia versus donors who died from cardiac death. Normalisation against GAPDH alone revealed no upregulation but, in some instances, a downregulation of the genes of interest. To further analyse this discrepancy, the stability of all reference genes used were reassessed and the very low expression stability of GAPDH was found to originate from the co-regulation of this gene under hypoxic conditions. We concluded that GAPDH is not a suitable reference gene for the quantitative analysis of gene expression in hypoxia and that validation of reference genes is a crucial step for generating biologically meaningful data.
Resumo:
The objective of this work was to validate, by quantitative PCR in real time (RT-qPCR), genes to be used as reference in studies of gene expression in soybean in drought-stressed trials. Four genes commonly used in soybean were evaluated: Gmβ-actin, GmGAPDH, GmLectin and GmRNAr18S. Total RNA was extracted from six samples: three from roots in a hydroponic system with different drought intensities (0, 25, 50, 75 and 100 minutes of water stress), and three from leaves of plants grown in sand with different soil moistures (15, 5 and 2.5% gravimetric humidity). The raw cycle threshold (Ct) data were analyzed, and the efficiency of each primer was calculated for an overall analysis of the Ct range among the different samples. The GeNorm application was used to evaluate the best reference gene, according to its stability. The GmGAPDH was the least stable gene, with the highest mean values of expression stability (M), and the most stable genes, with the lowest M values, were the Gmβ-actin and GmRNAr18S, when both root and leaves samples were tested. These genes can be used in RT-qPCR as reference gene for expression analysis.