920 resultados para reaction combustion
Resumo:
This work involved an investigation to ascertain how the substitution of nickel ions for zinc ions affects the structural, morphological and magnetic properties of NiFe(2)O(4) ferrite samples. Ni(1-x)Zn(x)Fe(2)O(4) (x = 0.0, 0.3 0.5, 0.7) powders were prepared by combustion reaction and characterized structurally by X-ray diffraction. The specific surface area of the powders was determined by the nitrogen adsorption method (BET). Magnetization measurements were taken using an alternative gradient magnetometer (AGM), which revealed that the powders prepared by combustion reaction resulted in nanosized particles with a particle size of 18-27 nm. The crystallite size and lattice parameter increased as the concentration of Zn increased. Moreover, augmenting the Zn content in the NiFe(2)O(4) ferrite increased the saturation magnetization and coercive field. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper reports experiments involving the electrochemical combustion of humic acid (HA) and removal of algae from pond water. An electrochemical flow reactor with a boron-doped diamond film anode was used and constant current experiments were conducted in batch recirculation mode. The mass transfer characteristics of the electrochemical device were determined by voltammetric experiments in the potential region of water stability, followed by a controlled current experiment in the potential region of oxygen evolution. The average mass transfer coefficient was 5.2 x 10(-5) m s(-1). The pond water was then processed to remove HA and algae in the conditions in which the reaction combustion occurred under mass transfer control. To this end, the mass transfer coefficient was used to estimate the initial limiting current density applied in the electrolytic experiments. As expected, all the parameters analyzed here-solution absorbance at 270 nm, total phenol concentration and total organic carbon concentration-decayed according to first-order kinetics. Since the diamond film anode successfully incinerated organic matter, the electrochemical system proved to be predictable and programmable.
Resumo:
Dissertação apresentada à Escola Superior Agrária do Instituto Politécnico de Castelo Branco para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Sistemas de Informação Geográfica - Recursos Agro-Florestais e Ambientais.
Resumo:
Computational simulations of the title reaction are presented, covering a temperature range from 300 to 2000 K. At lower temperatures we find that initial formation of the cyclopropene complex by addition of methylene to acetylene is irreversible, as is the stabilisation process via collisional energy transfer. Product branching between propargyl and the stable isomers is predicted at 300 K as a function of pressure for the first time. At intermediate temperatures (1200 K), complex temporal evolution involving multiple steady states begins to emerge. At high temperatures (2000 K) the timescale for subsequent unimolecular decay of thermalized intermediates begins to impinge on the timescale for reaction of methylene, such that the rate of formation of propargyl product does not admit a simple analysis in terms of a single time-independent rate constant until the methylene supply becomes depleted. Likewise, at the elevated temperatures the thermalized intermediates cannot be regarded as irreversible product channels. Our solution algorithm involves spectral propagation of a symmetrised version of the discretized master equation matrix, and is implemented in a high precision environment which makes hitherto unachievable low-temperature modelling a reality.
Resumo:
The goal of this study is to evaluate the influence of the urea and glycine fuels on the synthesis of Mn-Zn ferrite by combustion reaction The morphology and magnetic properties of the resulting powders were investigated. The powders were characterized by X-ray diffraction (XRD), nitrogen adsorption (BET), scanning and transmission electron microscopy (SEM and TEM), and magnetic measurement of M x H curves. The X-lay diffraction patterns indicated that the samples containing urea resulted in the formation of crystalline powders and the presence of hematite as a secondary phase The samples containing glycine presented only the formation of crystalline and monophases (Mn,Zn)Fe(2)O(4). The average crystallite size was 18 and 35 nm and saturation magnetization was 3.6 and 75 emu/g, respectively, for the samples containing urea and glycine. The samples synthesized with glycine fuel showed better magnetic properties for application as soft magnetic devices. (C) 2009 Elsevier B.V All rights reserved
Resumo:
The Er(3)Al(5)O(12) phosphor powders were prepared using the solution combustion method. Formation and homogeneity of the Er(3)Al(5)O(12) phosphor powders have been verified by X-ray diffraction and energy-dispersive X-ray analysis respectively. The frequency up-conversion from Er(3)Al(5)O(12) phosphor powder corresponding to the (2)H(9/2) -> (4)I(15/2), (2)H(11/2) -> (4)I(15/2), (4)S(3/2) -> (4)I(15/2), (4)F(9/2) -> (4)I(15/2) and the infrared emission (IR) due to the (4)I(13/2) -> (4)I(15/2) transitions lying at similar to 410, similar to 524, similar to 556, 645-680 nm and at similar to 1.53 mu m respectively upon excitation with a Ti-Sapphire pulsed/CW laser have been reported. The mechanism responsible for the frequency up-conversion and IR emission is discussed in detail. Defect centres induced by radiation were studied using the techniques of thermoluminescence and electron spin resonance. A single glow peak at 430A degrees C is observed and the thermoluminescence results show the presence of a defect center which decays at high temperature. Electron spin resonance studies indicate a center characterized by a g-factor equal to 2.0056 and it is observed that this center is not related to the thermoluminescence peak. A negligibly small concentration of cation and anion vacancies appears to be present in the phosphor in accordance with the earlier theoretical predictions.
Resumo:
Nickel ferrite powders with a nominal NiFe2O4 composition were synthesized by combustion reaction using urea as fuel. The powder was obtained using a vitreous silica basin heated directly on a hot plate at 480 degrees C until self-ignition occurred. After combustion, the powder was calcined at 700 degrees C for 2 h. The formation of the spinel phase and the distribution of cations in the tetrahedral and octahedral sites of the crystal structure were investigated by the Rietveld method, using synchrotron X-ray diffraction data and Mossbauer spectroscopy. The material presented a crystallite size of 120 nm and magnetic properties. The resulting stoichiometry after the Rietveld refinement was (Fe-0.989(2) Ni-0.011(2)) [Fe-1.012(2) Ni-0.989(2)] O-4.
Resumo:
The aim of this paper is to study the activities of ceria–zirconia and copper/ceria–zirconia catalysts, comparing with a commercial platinum/alumina catalyst, for soot combustion reaction under different gas atmospheres and loose contact mode (simulating diesel exhaust conditions), in order to analyse the kinetics and to deduce mechanistic implications. Activity tests were performed under isothermal and TPR conditions. The NO oxidation to NO2 was studied as well. It was checked that mass transfer limitations were not influencing the rate measurements. Global activation energies for the catalysed and non-catalysed soot combustion were calculated and properly discussed. The results reveal that ceria-based catalysts greatly enhance their activities under NOx/O2 between 425 °C and 450 °C, due to the “active oxygen”-assisted soot combustion. Remarkably, copper/ceria–zirconia shows a slightly higher soot combustion rate than the Pt-based catalyst (under NOx/O2, at 450 °C).
Resumo:
This paper presents a comprehensive and critical review of the mechanisms and kinetics of NO and N2O reduction reaction with coal chars under fluidised-bed combustion conditions (FBC). The heterogeneous reactions of NO and N2O with char/carbon surface have been well recognised as the most important processes in reducing both NOx and N2O in situ FBC. Compared to NO-carbon reactions in FBC, the reactions of N2O with chars have been relatively less understood and studied. Beginning with the overall reaction schemes for both NO and N2O reduction, the paper extensively discusses the reaction mechanisms including the effects of active surface sites. Generally, NO- and N2O-carbon reactions follow a series of step reactions. However, questions remain concerning the role of adsorbed phases of NO and N2O, and the behaviour of different surface sites. Important kinetics factors such as the rate expressions, kinetics parameters as well as the effects of surface area and pore structure are discussed in detail. The main factors influencing the reduction of NO and N2O in FBC conditions are the chemical and physical properties of chars, and the operating parameters of FBC such as temperature, presence of CO, O-2 and pressure. It is shown that under similar conditions, N2O is more readily reduced on the char surface than NO. Temperature was found to be a very important parameter in both NO and N2O reduction. It is generally agreed that both NO- and N2O-carbon reactions follow first-order reaction kinetics with respect to the NO and N2O concentrations. The kinetic parameters for NO and N2O reduction largely depend on the pore structure of chars. The correlation between the char surface area and the reactivities of NO/N2O-char reactions is considered to be of great importance to the determination of the reaction kinetics. The rate of NO reduction by chars is strongly enhanced by the presence of CO and O-2, but these species may not have significant effects on the rate of N2O reduction. However, the presence of these gases in FBC presents difficulties in the study of kinetics since CO cannot be easily eliminated from the carbon surface. In N2O reduction reactions, ash in chars is found to have significant catalytic effects, which must be accounted for in the kinetic models and data evaluation. (C) 1997 Elsevier Science Ltd.
Resumo:
Some materials exhibit a combustion event during mechanical alloying, which results in the rapid transformation of reactants into products, while others show a slow transformation of reactants into products, In this paper, the continuous W + C --> WC reaction is compared to the Ti + C --> TiC combustion reaction. Rietveld refinement of X-ray diffraction patterns is used to show that these particular reactions proceed through different pathways, determined by crystallographic factors of the reactants. When a crystallographic relationship exists between the reactants and the products, such as that between W and WC, the product forms slowly over a period of time. In contrast, insertion of C into the Ti structure is associated with atomic rearrangements within the crowded lattice planes and the subsequent catastrophic failure of the reactant lattices results in combustion to form TiC. (C) 2001 Academic Press.
Propagation of nonstationary curved and stretched premixed flames with multistep reaction mechanisms
Resumo:
The propagation speed of a thin premixed flame disturbed by an unsteady fluid flow of a larger scale is considered. The flame may also have a general shape but the reaction zone is assumed to be thin compared to the flame thickness. Unlike in preceding publications, the presented asymptotic analysis is performed for a general multistep reaction mechanism and, at the same time, the flame front is curved by the fluid flow. The resulting equations define the propagation speed of disturbed flames in terms of the properties of undisturbed planar flames and the flame stretch. Special attention is paid to the near-equidiffusion limit. In this case, the flame propagation speed is shown to depend on the effective Zeldovich number Z(f) , and the flame stretch. Unlike the conventional Zeldovich number, the effective Zeldovich number is not necessarily linked directly to the activation energies of the reactions. Several examples of determining the effective Zeldovich number for reduced combustion mechanisms are given while, for realistic reactions, the effective Zeldovich number is determined from experiments. Another feature of the present approach is represented by the relatively simple asymptotic technique based on the adaptive generalized curvilinear system of coordinates attached to the flame (i.e., intrinsic disturbed flame equations [IDFE]).
Resumo:
Ab initio calculations have been performed to determine the energetics of oxygen atoms adsorbed onto graphene planes and the possible reaction path extracting carbon atorns in the form of carbon monoxide. Front the energetics it is confirmed that this reaction path will not significantly contribute to the gasification of well ordered carbonaceous chars. Modelling results which explore this limit Lire presented. (C) 2002 Elsevier Science Ltd, All rights reserved.
Resumo:
An efficient Lanczos subspace method has been devised for calculating state-to-state reaction probabilities. The method recasts the time-independent wave packet Lippmann-Schwinger equation [Kouri , Chem. Phys. Lett. 203, 166 (1993)] inside a tridiagonal (Lanczos) representation in which action of the causal Green's operator is affected easily with a QR algorithm. The method is designed to yield all state-to-state reaction probabilities from a given reactant-channel wave packet using a single Lanczos subspace; the spectral properties of the tridiagonal Hamiltonian allow calculations to be undertaken at arbitrary energies within the spectral range of the initial wave packet. The method is applied to a H+O-2 system (J=0), and the results indicate the approach is accurate and stable. (C) 2002 American Institute of Physics.
Resumo:
An investigation of the role of oxygen in the nitrous oxide/carbon reaction was carried out on various carbon samples (both graphitic and nongraphitic) over a range of temperatures and partial pressures. Previous work reported that oxygen strongly inhibited the nitrous oxide/carbon reaction. Large ratios of O-2/N2O were used in all previous work. In this work, the O-2/N2O ratio was kept below 1, and we found that oxygen did not inhibit the rate of the C + N2O reaction. Instead, the rate of the reaction in the presence of oxygen was essentially that predicted by the two independent reactions, nitrous oxide/carbon and oxygen/carbon, occurring simultaneously. A simple theoretical explanation is given for the observations, both past and present, on the basis of competitive chemisorption of nitrous oxide and oxygen on active sites.