867 resultados para reaching task


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We aimed to evaluate the influence of different types of wheelchair seats on paraplegic individuals' postural control using a maximum anterior reaching test. Balance evaluations during 50, 75, and 90% of each individual's maximum reach in the forward direction using two different cushions on seat (one foam and one gel) and a no-cushion condition were carried out on 11 individuals with a spinal cord injury (SCI) and six individuals without SCI. Trunk anterior displacement and the time spent to perform the test were assessed. No differences were found for the three types of seats in terms of trunk anterior displacement and the time spent to perform the test when intragroup comparisons were made in both groups (P > 0.05). The intergroup comparison showed that body displacement was less prominent and the time spent to perform the test was more prolonged for individuals with SCI (P < 0.05), which suggests a postural control deficit. The seat type did not affect the ability of the postural control system to maintain balance during the forward-reaching task.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and Purpose—Severe upper limb paresis is a major contributor to disability after stroke. This study investigated the efficacy of a new nonrobotic training device, the Sensorimotor Active Rehabilitation Training (SMART) Arm, that was used with or without electromyography-triggered electrical stimulation of triceps brachii to augment elbow extension, permitting stroke survivors with severe paresis to practice a constrained reaching task.

Methods—A single-blind, randomized clinical trial was conducted with 42 stroke survivors with severe and chronic paresis. Thirty-three participants completed the study, of whom 10 received training using the SMART Arm with electromyography-triggered electrical stimulation, 13 received training using the SMART Arm alone, and 10 received no intervention (control). Training consisted of 12 1-hour sessions over 4 weeks. The primary outcome measure was “upper arm function,” item 6 of the Motor Assessment Scale. Secondary outcome measures included impairment measures; triceps muscle strength, reaching force, modified Ashworth scale; and activity measures: reaching distance and Motor Assessment Scale. Assessments were administered before (0 weeks) and after training (4 weeks) and at 2 months follow-up (12 weeks).

Results—Both SMART Arm groups demonstrated significant improvements in all impairment and activity measures after training and at follow-up. There was no significant difference between these 2 groups. There was no change in the control group.

Conclusions—Our findings indicate that training of reaching using the SMART Arm can reduce impairment and improve activity in stroke survivors with severe and chronic upper limb paresis, highlighting the benefits of intensive task-oriented practice, even in the context of severe paresis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to determine whether or not blind children perseverate during a modified Piagetian A-not-B reaching task, with conditions that employ luminous AB targets and acoustic AB targets. Ten congenitally blind children, ages 1-4 years, with residual vision for light, took part in this study. Behavioral and kinematic data were computed for participants' reaches, performed in six A trials and in two B trials, in both stimulus conditions. All of the children perseverated in the luminous condition, and none of them perseverated in the condition using acoustic targets. The children tilted their heads in the direction of the target as they reached towards it. However, this coupling action (head-reaching) occurred predominantly in the A trials in the acoustic condition. In the luminous condition, in contrast to the acoustic condition, the children took longer times to initiate the reaching movement. Also, in the luminous condition, the children explored the target surroundings, unlike the acoustic condition, in which they reached straight ahead. For these blind children, sound was more relevant to reaching than was the luminous stimulus. The luminous input caused perseveration in congenitally blind children in a similar way that has been reported in the literature for typically-developing, sighted infants, ages 8-12 months, performing A-not-B tasks with visual inputs. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reaching and grasping an object is an action that can be performed in light, under visual guidance, as well as in darkness, under proprioceptive control only. Area V6A is a visuomotor area involved in the control of reaching movements. V6A, besides neurons activated by the execution of reaching movements, shows passive somatosensory and visual responses. This suggests fro V6A a multimodal capability of integrating sensory and motor-related information, We wanted to know whether this integration occurrs in reaching movements and in the present study we tested whether the visual feedback influenced the reaching activity of V6A neurons. In order to better address this question, we wanted to interpret the neural data in the light of the kinematic of reaching performance. We used an experimental paradigm that could examine V6A responses in two different visual backgrounds, light and dark. In these conditions, the monkey performed an istructed-delay reaching task moving the hand towards different target positions located in the peripersonal space. During the execution of reaching task, the visual feedback is processed in a variety of patterns of modulation, sometimes not expected. In fact, having already demonstrated in V6A reach-related discharges in absence of visual feedback, we expected two types of neural modulation: 1) the addition of light in the environment enhanced reach-related discharges recorded in the dark; 2) the light left the neural response unmodified. Unexpectedly, the results show a complex pattern of modulation that argues against a simple additive interaction between visual and motor-related signals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We asked 12 patients with left visual neglect to bisect the gap between two cylinders or to reach rapidly between them to a more distal target zone. Both tasks demanded a motor response but these responses were quite different in nature. The bisection response was a communicative act whereby the patient indicated the perceived midpoint. The reaching task carried no imperative to bisect the gap, only to maintain a safe distance from either cylinder while steering to the target zone. Optimal performance on either task could only be achieved by reference to the location of both cylinders. Our analysis focused upon the relative influence of the left and right cylinders on the lateral location of the response. In the bisection task, all neglect patients showed qualitatively the same asymmetry, with the left cylinder exerting less influence than the right. In the reaching task, the neglect group behaved like normal subjects, being influenced approximately equally by the two cylinders. This was true for all bar two of the patients, who showed clear neglect in both tasks. We conclude that the visuomotor processing underlying obstacle avoidance during reaching is preserved in most patients with left visual neglect. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we give a brief review of pattern classification algorithms based on discriminant analysis. We then apply these algorithms to classify movement direction based on multivariate local field potentials recorded from a microelectrode array in the primary motor cortex of a monkey performing a reaching task. We obtain prediction accuracies between 55% and 90% using different methods which are significantly above the chance level of 12.5%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous research has shown that Parkinson's disease (PD) patients can increase the speed of their movement when catching a moving ball compared to when reaching for a static ball (Majsak et al., 1998). A recent model proposed by Redgrave et al. (2010) explains this phenomenon with regard to the dichotomic organization of motor loops in the basal ganglia circuitry and the role of sensory micro-circuitries in the control of goal-directed actions. According to this model, external visual information that is relevant to the required movement can induce a switch from a habitual control of movement toward an externally-paced, goal-directed form of guidance, resulting in augmented motor performance (Bienkiewicz et al., 2013). In the current study, we investigated whether continuous acoustic information generated by an object in motion can enhance motor performance in an arm reaching task in a similar way to that observed in the studies of Majsak et al. (1998, 2008). In addition, we explored whether the kinematic aspects of the movement are regulated in accordance with time to arrival information generated by the ball's motion as it reaches the catching zone. A group of 7 idiopathic PD (6 male, 1 female) patients performed a ball-catching task where the acceleration (and hence ball velocity) was manipulated by adjusting the angle of the ramp. The type of sensory information (visual and/or auditory) specifying the ball's arrival at the catching zone was also manipulated. Our results showed that patients with PD demonstrate improved motor performance when reaching for a ball in motion, compared to when stationary. We observed how PD patients can adjust their movement kinematics in accordance with the speed of a moving target, even if vision of the target is occluded and patients have to rely solely on auditory information. We demonstrate that the availability of dynamic temporal information is crucial for eliciting motor improvements in PD. Furthermore, these effects appear independent from the sensory modality through-which the information is conveyed. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Une variété de modèles sur le processus de prise de décision dans divers contextes présume que les sujets accumulent les évidences sensorielles, échantillonnent et intègrent constamment les signaux pour et contre des hypothèses alternatives. L'intégration continue jusqu'à ce que les évidences en faveur de l'une des hypothèses dépassent un seuil de critère de décision (niveau de preuve exigé pour prendre une décision). De nouveaux modèles suggèrent que ce processus de décision est plutôt dynamique; les différents paramètres peuvent varier entre les essais et même pendant l’essai plutôt que d’être un processus statique avec des paramètres qui ne changent qu’entre les blocs d’essais. Ce projet de doctorat a pour but de démontrer que les décisions concernant les mouvements d’atteinte impliquent un mécanisme d’accumulation temporelle des informations sensorielles menant à un seuil de décision. Pour ce faire, nous avons élaboré un paradigme de prise de décision basée sur un stimulus ambigu afin de voir si les neurones du cortex moteur primaire (M1), prémoteur dorsal (PMd) et préfrontal (DLPFc) démontrent des corrélats neuronaux de ce processus d’accumulation temporelle. Nous avons tout d’abord testé différentes versions de la tâche avec l’aide de sujets humains afin de développer une tâche où l’on observe le comportement idéal des sujets pour nous permettre de vérifier l’hypothèse de travail. Les données comportementales chez l’humain et les singes des temps de réaction et du pourcentage d'erreurs montrent une augmentation systématique avec l'augmentation de l'ambigüité du stimulus. Ces résultats sont cohérents avec les prédictions des modèles de diffusion, tel que confirmé par une modélisation computationnelle des données. Nous avons, par la suite, enregistré des cellules dans M1, PMd et DLPFc de 2 singes pendant qu'ils s'exécutaient à la tâche. Les neurones de M1 ne semblent pas être influencés par l'ambiguïté des stimuli mais déchargent plutôt en corrélation avec le mouvement exécuté. Les neurones du PMd codent la direction du mouvement choisi par les singes, assez rapidement après la présentation du stimulus. De plus, l’activation de plusieurs cellules du PMd est plus lente lorsque l'ambiguïté du stimulus augmente et prend plus de temps à signaler la direction de mouvement. L’activité des neurones du PMd reflète le choix de l’animal, peu importe si c’est une bonne réponse ou une erreur. Ceci supporte un rôle du PMd dans la prise de décision concernant les mouvements d’atteinte. Finalement, nous avons débuté des enregistrements dans le cortex préfrontal et les résultats présentés sont préliminaires. Les neurones du DLPFc semblent beaucoup plus influencés par les combinaisons des facteurs de couleur et de position spatiale que les neurones du PMd. Notre conclusion est que le cortex PMd est impliqué dans l'évaluation des évidences pour ou contre la position spatiale de différentes cibles potentielles mais assez indépendamment de la couleur de celles-ci. Le cortex DLPFc serait plutôt responsable du traitement des informations pour la combinaison de la couleur et de la position des cibles spatiales et du stimulus ambigu nécessaire pour faire le lien entre le stimulus ambigu et la cible correspondante.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências da Motricidade - IBRC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We usually perform actions in a dynamic environment and changes in the location of a target for an upcoming action require both covert shifts of attention and motor planning update. In this study we tested whether, similarly to oculomotor areas that provide signals for overt and covert attention shifts, covert attention shifts modulate activity in cortical area V6A, which provides a bridge between visual signals and arm-motor control. We performed single cell recordings in monkeys trained to fixate straight-ahead while shifting attention outward to a peripheral cue and inward again to the fixation point. We found that neurons in V6A are influenced by spatial attention demonstrating that visual, motor, and attentional responses can occur in combination in single neurons of V6A. This modulation in an area primarily involved in visuo-motor transformation for reaching suggests that also reach-related regions could directly contribute in the shifts of spatial attention necessary to plan and control goal-directed arm movements. Moreover, to test whether V6A is causally involved in these processes, we have performed a human study using on-line repetitive transcranial magnetic stimulation over the putative human V6A (pV6A) during an attention and a reaching task requiring covert shifts of attention and reaching movements towards cued targets in space. We demonstrate that the pV6A is causally involved in attention reorienting to target detection and that this process interferes with the execution of reaching movements towards unattended targets. The current findings suggest the direct involvement of the action-related dorso-medial visual stream in attentional processes, and a more specific role of V6A in attention reorienting. Therefore, we propose that attention signals are used by the V6A to rapidly update the current motor plan or the ongoing action when a behaviorally relevant object unexpectedly appears at an unattended location.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gaseous second messenger nitric oxide (NO), which readily diffuses in brain tissue, has been implicated in cerebellar long-term depression (LTD), a form of synaptic plasticity thought to be involved in cerebellar learning. Can NO diffusion facilitate cerebellar learning? The inferior olive (IO) cells, which provide the error signals necessary for modifying the granule cell–Purkinje cell (PC) synapses by LTD, fire at ultra-low firing rates in vivo, rarely more than 2–4 spikes within a second. In this paper, we show that NO diffusion can improve the transmission of sporadic IO error signals to PCs within cerebellar cortical functional units, or microzones. To relate NO diffusion to adaptive behavior, we add NO diffusion and a “volumic” LTD learning rule, i.e., a learning rule that depends both on the synaptic activity and on the NO concentration at the synapse, to a cerebellar model for arm movement control. Our results show that biologically plausible diffusion leads to an increase in information transfer of the error signals to the PCs when the IO firing rate is ultra-low. This, in turn, enhances cerebellar learning as shown by improved performance in an arm-reaching task.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.