998 resultados para rainfall frequency


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Significant changes are reported in extreme rainfall characteristics over India in recent studies though there are disagreements on the spatial uniformity and causes of trends. Based on recent theoretical advancements in the Extreme Value Theory (EVT), we analyze changes in extreme rainfall characteristics over India using a high-resolution daily gridded (1 degrees latitude x 1 degrees longitude) dataset. Intensity, duration and frequency of excess rain over a high threshold in the summer monsoon season are modeled by non-stationary distributions whose parameters vary with physical covariates like the El-Nino Southern Oscillation index (ENSO-index) which is an indicator of large-scale natural variability, global average temperature which is an indicator of human-induced global warming and local mean temperatures which possibly indicate more localized changes. Each non-stationary model considers one physical covariate and the best chosen statistical model at each rainfall grid gives the most significant physical driver for each extreme rainfall characteristic at that grid. Intensity, duration and frequency of extreme rainfall exhibit non-stationarity due to different drivers and no spatially uniform pattern is observed in the changes in them across the country. At most of the locations, duration of extreme rainfall spells is found to be stationary, while non-stationary associations between intensity and frequency and local changes in temperature are detected at a large number of locations. This study presents the first application of nonstationary statistical modeling of intensity, duration and frequency of extreme rainfall over India. The developed models are further used for rainfall frequency analysis to show changes in the 100-year extreme rainfall event. Our findings indicate the varying nature of each extreme rainfall characteristic and their drivers and emphasize the necessity of a comprehensive framework to assess resulting risks of precipitation induced flooding. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of Sao Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of Sao Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of São Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of São Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society

Relevância:

60.00% 60.00%

Publicador:

Resumo:

以陕北延安黄土高原为例 ,经分析得出 :(1)黄土高原在实施竹节水平沟整地工程时 ,设计暴雨可采用 10年一遇 3h降水 6 0 mm的标准 ;(2 )每个竹节的蓄水容积不得小于 2 .5m×1.2 m× 0 .35m

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper investigates stochastic processes forced by independent and identically distributed jumps occurring according to a Poisson process. The impact of different distributions of the jump amplitudes are analyzed for processes with linear drift. Exact expressions of the probability density functions are derived when jump amplitudes are distributed as exponential, gamma, and mixture of exponential distributions for both natural and reflecting boundary conditions. The mean level-crossing properties are studied in relation to the different jump amplitudes. As an example of application of the previous theoretical derivations, the role of different rainfall-depth distributions on an existing stochastic soil water balance model is analyzed. It is shown how the shape of distribution of daily rainfall depths plays a more relevant role on the soil moisture probability distribution as the rainfall frequency decreases, as predicted by future climatic scenarios. © 2010 The American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Comprehensive surface-based retrievals of cloud optical and microphysical properties were made at Taihu, a highly polluted site in the central Yangtze Delta region, during a research campaign from May 2008 to December 2009. Cloud optical depth (COD), effective radius (Re), and liquid water path (LWP) were retrieved from measurements made with a suite of ground-based and spaceborne instruments, including an Analytical Spectral Devices spectroradiometer, a multi␣lter rotating shadowband radiometer, a multichannel microwave radiometer profiler, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua satellites. Retrievals from zenith radiance measurements capture better the temporal variation of cloud properties than do retrievals from hemispherical fluxes. Annual mean LWP, COD, and Re are 115.8 ± 90.8 g/m2, 28.5 ± 19.2, and 6.9 ± 4.2 microns. Over 90% of LWP values are less than 250 g/m2. Most of the COD values (>90%) fall between 5 and 60, and ~80% of Re values are less than 10 microns. Maximum (minimum) values of LWP and Re occur in summer (winter); COD is highest in winter and spring. Raining and nonraining clouds have signi␣cant differences in LWP, COD, and Re. Rainfall frequency is best correlated with LWP, followed by COD and Re. Cloud properties retrieved from multiple ground-based instruments are also compared with those from satellite retrievals. On average, relative to surface retrievals, mean differences of satellite retrievals in cloud LWP, COD, and Re were -33.6 g/m2 (-26.4%), -5.8 (-31.4%), and 2.9 ␣m (29.3%) for 11 MODIS-Terra overpasses and -43.3 g/m2 (-22.3%), -3.0 (-10.0%), and -1.3 ␣m (-12.0%) for 8 MODIS-Aqua overpasses, respectively. These discrepancies indicate that MODIS cloud products still suffer from large uncertainties in this region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Convective storm rainfall is of special importance to urban hydrological studies due to its temporal and spatial variability. Although dense networks of recording rain gauges can be employed to characterize such rainfall, very few investigations of this type have been undertaken due to their prohibitive cost. This paper reports some data on characteristics of tropical convective storms obtained from radar at Bauru in the State of São Paulo, Brazil. Periods of convective precipitation were identified by exclusion of those related to frontal activity with the help of synoptic maps and the radar screen record. The occurrence and evolution of convective storms were observed in two 28 km × 28 km windows obtaining information on the life history of convective cells and the magnitude of rainfall. Frequency distributions of the time of occurrence of convective rainfall, cell size, area covered, life duration and maximum and average rainfall observed in the experimental areas are presented and discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The frequency of extreme rainfall events in Southern Brazil is impacted by Ell Nino - Southern Oscillation (ENSO) episodes, especially in austral spring. There are two areas in which this impact is more significant: one is on the coast, where extreme events are more frequent during El Nino (EN) and the other one extends inland, where extreme events increase during EN and decrease during La Nina (LN). Atmospheric circulation patterns associated with severe rainfall in those areas are similar (opposite) to anomalous patterns characteristic of EN (LN) episodes, indicating why increase (decrease) of extreme events in EN (LN) episodes is favoured. The most recurrent precipitation patterns during extreme rainfall events in each of these areas are disclosed by Principal Component Analysis (PCA) and evidence the separation between extreme events in these areas: a severe precipitation event generally does not occur simultaneously in the coast and inland, although they may Occur inland and in the coastal region in sequence. Although EN predominantly enhances extreme rainfall, there are EN years in which fewer severe events occur than the average of neutral years, and also the enhancement of extreme rainfall is not uniform for different EN episodes, because the interdecadal non-ENSO variability also modulates significantly the frequency of extreme events in Southern Brazil. The inland region, which is more affected, shows increase (decrease) of extreme rainfall in association with the negative (positive) phase of the Atlantic Multidecadal Variability, with the negative (positive) phase of the Pacific Multidecadal Variability and with the positive (negative) phase of the Pacific Interdecadal Variability. Copyright (C) 2008 Royal Meteorological Society

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a spatial-temporal downscaling approach to construction of the intensity-duration-frequency (IDF) relations at a local site in the context of climate change and variability. More specifically, the proposed approach is based on a combination of a spatial downscaling method to link large-scale climate variables given by General Circulation Model (GCM) simulations with daily extreme precipitations at a site and a temporal downscaling procedure to describe the relationships between daily and sub-daily extreme precipitations based on the scaling General Extreme Value (GEV) distribution. The feasibility and accuracy of the suggested method were assessed using rainfall data available at eight stations in Quebec (Canada) for the 1961-2000 period and climate simulations under four different climate change scenarios provided by the Canadian (CGCM3) and UK (HadCM3) GCM models. Results of this application have indicated that it is feasible to link sub-daily extreme rainfalls at a local site with large-scale GCM-based daily climate predictors for the construction of the IDF relations for present (1961-1990) and future (2020s, 2050s, and 2080s) periods at a given site under different climate change scenarios. In addition, it was found that annual maximum rainfalls downscaled from the HadCM3 displayed a smaller change in the future, while those values estimated from the CGCM3 indicated a large increasing trend for future periods. This result has demonstrated the presence of high uncertainty in climate simulations provided by different GCMs. In summary, the proposed spatial-temporal downscaling method provided an essential tool for the estimation of extreme rainfalls that are required for various climate-related impact assessment studies for a given region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contribution from Bureau of agricultural engineering.