Effect of different jump distributions on the dynamics of jump processes


Autoria(s): Daly, E; Porporato, A
Data(s)

28/06/2010

Identificador

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2010, 81 (6)

1539-3755

http://hdl.handle.net/10161/4288

1550-2376

http://hdl.handle.net/10161/4288

Idioma(s)

en_US

Relação

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

10.1103/PhysRevE.81.061133

Physical Review E

Tipo

Journal Article

Resumo

The paper investigates stochastic processes forced by independent and identically distributed jumps occurring according to a Poisson process. The impact of different distributions of the jump amplitudes are analyzed for processes with linear drift. Exact expressions of the probability density functions are derived when jump amplitudes are distributed as exponential, gamma, and mixture of exponential distributions for both natural and reflecting boundary conditions. The mean level-crossing properties are studied in relation to the different jump amplitudes. As an example of application of the previous theoretical derivations, the role of different rainfall-depth distributions on an existing stochastic soil water balance model is analyzed. It is shown how the shape of distribution of daily rainfall depths plays a more relevant role on the soil moisture probability distribution as the rainfall frequency decreases, as predicted by future climatic scenarios. © 2010 The American Physical Society.