928 resultados para railway crew scheduling
Resumo:
Railway crew scheduling problem is the process of allocating train services to the crew duties based on the published train timetable while satisfying operational and contractual requirements. The problem is restricted by many constraints and it belongs to the class of NP-hard. In this paper, we develop a mathematical model for railway crew scheduling with the aim of minimising the number of crew duties by reducing idle transition times. Duties are generated by arranging scheduled trips over a set of duties and sequentially ordering the set of trips within each of duties. The optimisation model includes the time period of relief opportunities within which a train crew can be relieved at any relief point. Existing models and algorithms usually only consider relieving a crew at the beginning of the interval of relief opportunities which may be impractical. This model involves a large number of decision variables and constraints, and therefore a hybrid constructive heuristic with the simulated annealing search algorithm is applied to yield an optimal or near-optimal schedule. The performance of the proposed algorithms is evaluated by applying computational experiments on randomly generated test instances. The results show that the proposed approaches obtain near-optimal solutions in a reasonable computational time for large-sized problems.
Resumo:
Addressing the Crew Scheduling Problem (CSP) in transportation systems can be too complex to capture all details. The designed models usually ignore or simplify features which are difficult to formulate. This paper proposes an alternative formulation using a Mixed Integer Programming (MIP) approach to the problem. The optimisation model integrates the two phases of pairing generation and pairing optimisation by simultaneously sequencing trips into feasible duties and minimising total elapsed time of any duty. Crew scheduling constraints in which the crew have to return to their home depot at the end of the shift are included in the model. The flexibility of this model comes in the inclusion of the time interval of relief opportunities, allowing the crew to be relieved during a finite time interval. This will enhance the robustness of the schedule and provide a better representation of real-world conditions.
Resumo:
Crew scheduling and crew rostering are similar and related problems which can be solved by similar procedures. So far, the existing solution methods usually create a model for each one of these problems (scheduling and rostering), and when they are solved together in some cases an interaction between models is considered in order to obtain a better solution. A single set covering model to solve simultaneously both problems is presented here, where the total quantity of drivers needed is directly considered and optimized. This integration allows to optimize all of the depots at the same time, while traditional approaches needed to work depot by depot, and also it allows to see and manage the relationship between scheduling and rostering, which was known in some degree but usually not easy to quantify as this model permits. Recent research in the area of crew scheduling and rostering has stated that one of the current challenges to be achieved is to determine a schedule where crew fatigue, which depends mainly on the quality of the rosters created, is reduced. In this approach rosters are constructed in such way that stable working hours are used in every week of work, and a change to a different shift is done only using free days in between to make easier the adaptation to the new working hours. Computational results for real-world-based instances are presented. Instances are geographically diverse to test the performance of the procedures and the model in different scenarios.
Resumo:
This paper presents a new multi-depot combined vehicle and crew scheduling algorithm, and uses it, in conjunction with a heuristic vehicle routing algorithm, to solve the intra-city mail distribution problem faced by Australia Post. First we describe the Australia Post mail distribution problem and outline the heuristic vehicle routing algorithm used to find vehicle routes. We present a new multi-depot combined vehicle and crew scheduling algorithm based on set covering with column generation. The paper concludes with a computational investigation examining the affect of different types of vehicle routing solutions on the vehicle and crew scheduling solution, comparing the different levels of integration possible with the new vehicle and crew scheduling algorithm and comparing the results of sequential versus simultaneous vehicle and crew scheduling, using real life data for Australia Post distribution networks.
Resumo:
This work aims to "build" rostering urban bus crews to minimize the cost of overtime. For this purpose a mathematical model was developed based on case study in an urban transport company in the metropolitan region of Natal. This problem is usually known in the literature as the Crew Scheduling Problem (CSP) and classified as NP-hard. The mathematical programming takes into account constraints such as: completion of all trips, daily and maximum allowable range of home and / or food. We used the Xpress-MP software to implement and validate the proposed model. For the tested instances the application of the model allowed a reduction in overtime from 38% to 84%
Resumo:
A schedule coordination problem involving two train services provided by different operators is modeled as an optimization of revenue intake. The coordination is achieved through the adjustment of commencement times of the train services by negotiation. The problem is subject to constraints regarding to passenger demands and idle costs of rolling-stocks from both operators. This paper models the operators as software agents having the flexibility to incorporate one of the two (and potentially more) proposed negotiation strategies. Empirical results show that agents employing different combination of strategies have significant impact on the quality of solution and negotiation time.
Resumo:
With the recent regulatory reforms in a number of countries, railways resources are no longer managed by a single party but are distributed among different stakeholders. To facilitate the operation of train services, a train service provider (SP) has to negotiate with the infrastructure provider (IP) for a train schedule and the associated track access charge. This paper models the SP and IP as software agents and the negotiation as a prioritized fuzzy constraint satisfaction (PFCS) problem. Computer simulations have been conducted to demonstrate the effects on the train schedule when the SP has different optimization criteria. The results show that by assigning different priorities on the fuzzy constraints, agents can represent SPs with different operational objectives.
Resumo:
Cane railway systems provide empty bins for harvesters to fill and full bins of cane for the factory to process. These operations need to be conducted in a timely fashion to minimise delays to harvesters and the factory and to minimise the cut-to-crush delay, while also minimising the cost of providing this service. A range of tools has been provided over the years to assist in this process. This paper reviews the objectives of the cane transport system and the tools available to achieve those objectives. The facilities within these tools to assist in the control of costs are highlighted.
Resumo:
In open railway access markets, a train service provider (TSP) negotiates with an infrastructure provider (IP) for track access rights. This negotiation has been modeled by a multi-agent system (MAS) in which the IP and TSP are represented by separate software agents. One task of the IP agent is to generate feasible (and preferably optimal) track access rights, subject to the constraints submitted by the TSP agent. This paper formulates an IP-TSP transaction and proposes a branch-and-bound algorithm for the IP agent to identify the optimal track access rights. Empirical simulation results show that the model is able to emulate rational agent behaviors. The simulation results also show good consistency between timetables attained from the proposed methods and those derived by the scheduling principles adopted in practice.
Resumo:
Open access reforms to railway regulations allow multiple train operators to provide rail services on a common infrastructure. As railway operations are now independently managed by different stakeholders, conflicts in operations may arise, and there have been attempts to derive an effective access charge regime so that these conflicts may be resolved. One approach is by direct negotiation between the infrastructure manager and the train service providers. Despite the substantial literature on the topic, few consider the benefits of employing computer simulation as an evaluation tool for railway operational activities such as access pricing. This article proposes a multi-agent system (MAS) framework for the railway open market and demonstrates its feasibility by modelling the negotiation between an infrastructure provider and a train service operator. Empirical results show that the model is capable of resolving operational conflicts according to market demand.
Resumo:
High reliability of railway power systems is one of the essential criteria to ensure quality and cost-effectiveness of railway services. Evaluation of reliability at system level is essential for not only scheduling maintenance activities, but also identifying reliability-critical components. Various methods to compute reliability on individual components or regularly structured systems have been developed and proven to be effective. However, they are not adequate for evaluating complicated systems with numerous interconnected components, such as railway power systems, and locating the reliability critical components. Fault tree analysis (FTA) integrates the reliability of individual components into the overall system reliability through quantitative evaluation and identifies the critical components by minimum cut sets and sensitivity analysis. The paper presents the reliability evaluation of railway power systems by FTA and investigates the impact of maintenance activities on overall reliability. The applicability of the proposed methods is illustrated by case studies in AC railways.
Resumo:
In Australia, railway systems play a vital role in transporting the sugarcane crop from farms to mills. The sugarcane transport system is very complex and uses daily schedules, consisting of a set of locomotives runs, to satisfy the requirements of the mill and harvesters. The total cost of sugarcane transport operations is very high; over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. Efficient schedules for sugarcane transport can reduce the cost and limit the negative effects that this system can have on the raw sugar production system. There are several benefits to formulating the train scheduling problem as a blocking parallel-machine job shop scheduling (BPMJSS) problem, namely to prevent two trains passing in one section at the same time; to keep the train activities (operations) in sequence during each run (trip) by applying precedence constraints; to pass the trains on one section in the correct order (priorities of passing trains) by applying disjunctive constraints; and, to ease passing trains by solving rail conflicts by applying blocking constraints and Parallel Machine Scheduling. Therefore, the sugarcane rail operations are formulated as BPMJSS problem. A mixed integer programming and constraint programming approaches are used to describe the BPMJSS problem. The model is solved by the integration of constraint programming, mixed integer programming and search techniques. The optimality performance is tested by Optimization Programming Language (OPL) and CPLEX software on small and large size instances based on specific criteria. A real life problem is used to verify and validate the approach. Constructive heuristics and new metaheuristics including simulated annealing and tabu search are proposed to solve this complex and NP-hard scheduling problem and produce a more efficient scheduling system. Innovative hybrid and hyper metaheuristic techniques are developed and coded using C# language to improve the solutions quality and CPU time. Hybrid techniques depend on integrating heuristic and metaheuristic techniques consecutively, while hyper techniques are the complete integration between different metaheuristic techniques, heuristic techniques, or both.
Resumo:
In this paper, we will discuss the issue of rostering jobs of cabin crew attendants at KLM. Generated schedules get easily disrupted by events such as illness of an employee. Obviously, reserve people have to be kept 'on duty' to resolve such disruptions. A lot of reserve crew requires more employees, but too few results in so-called secondary disruptions, which are particularly inconvenient for both the crew members and the planners. In this research we will discuss several modifications of the reserve scheduling policy that have a potential to reduce the number of secondary disruptions, and therefore to improve the performance of the scheduling process.
Resumo:
This research utilised software developed for managing the Australian sugar industry's cane rail transport operations and GPS data used to track locomotives to ensure safe operation of the railway system to improve transport operations. As a result, time usage in the sugarcane railway can now be summarised and locomotive arrival time to sidings and mills can be predicted. This information will help the development of more efficient run schedules and enable mill staff and harvesters to better plan their shifts ahead, enabling cost reductions through better use of available time.