78 resultados para pyroelectric


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the ferroelectric and pyroelectric properties of the composite films of lithium tantalate (LT) nanoparticle in poly(vinylidene fluoride) PVDF matrix at different volume fractions of LT (f(LT) = 0.047, 0.09 and 0.17). For an applied electric field of 150 kV cm(-1) the nonvolatile polarization of the composite was observed to increase from 0.014 mu C cm(-2) at f(LT) = 0 to 2.06 mu C cm(-2) at f(LT) = 0.17. For f(LT) = 0.17, the composite films exhibit a saturated ferroelectric hysteresis loop with a remanent polarization (2P(r) = 4.13 mu C cm(-2)). Compared with pure poled PVDF the composite films also showed a factor of about five enhancement in the pyroelectric coefficient at f(LT) = 0.17. When used in energy detection mode the pyroelectric voltage sensitivity of the composite films was found to increase from 3.93 to 18.5 VJ(-1) with an increase in f(LT) from 0.0 to 0.17.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystal macroscopic thermal expansion coefficient measurements have been made on uniaxial lithium potassium sulphate crystal both along and normal to the six fold axis, employing Fizeau’s interferometer method. Measurements were made in the range of −120°C to 500°C. The results show that lithium potassium sulphate exhibits two major anomalies in its expansion coefficients around −95°C and 422°C respectively, the one at −95°C has been observed for the first time. The nature of dimensional changes of the crystal at the upper and lower transition points are opposite in nature. The crystal shows considerable lattice anisotropy. Megaw’s tilt concept has been invoked to explain the relative magnitudes of expansion coefficients alonga andc directions. Structural features responsible for the absence of ferroelectricity in this crystal have been pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical conductivity and electrical relaxation for ferroelectric Bi4Ti2.98Nb0.01Ta0.01O12 (BTNT) ceramics have been reported in the frequency range 0.1 Hz to 1 MHz and in the 300-550 degrees C temperature range. The electrical data was analyzed in the framework of the dielectric as well as the electric modulus formalisms. The bulk dc conductivity at various temperatures was extracted from the electrical relaxation data. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found to be 0.93 +/- 0.03 eV, close to that of the activation energy for dc conductivity (1.03 +/- 0.02 eV). It suggests that the movements of oxygen ions are responsible for both ionic conduction as well as the relaxation process. The pyroelectric coefficient was found to be 12 mu C m(-2) K-1 at room temperature which is higher than that of the reported value of pyroelectric coefficient for undoped Bi4Ti3O12 ceramics. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric, pyroelectric and thermal properties of ferroelectric Bi2VO5.5(Bi4V2O11) ceramic have been studied over a temperature range of 300-780 K. The sign of the pyroelectric coefficient is positive at room temperature. The dielectric constant, pyroelectric coefficient and specific heat exhibit anomalies around the Curie temperature, 725 K. The frequency response of the dielectric constant and tan delta has been studied over a frequency range of 1-100 kHz. It is found that both the dielectric constant and the loss tangent decrease with increasing frequency. The pyroelectric figures of merit from the point of view of different applications have been calculated at 320 K by combining pyroelectric, dielectric and thermal properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pyroelectric and electrostrictive properties of lead zinc niobate-lead titanate-barium titanate (PZN-BT-PT) ceramic solid solution were investigated. These properties of the (1 - x)PZN.xBT series were qualitatively explained with a composition fluctuation model. The pyroelectric depolarization temperatures of (1 - x - y)PZN.xBT.yPT ceramics were utilized to select compositions for room-temperature electrostrictive applications. Among them, 0.85PZN.0.10BT.0.05PT ceramic with Q11 = 0.018 m4/C2, Q12 = -0.0085 m4/C2, S2 at 25 kV/cm = -6.1 x 10(-4), T(max) = 75-degrees-C at 1 kHz, and T(t) = 27-degrees-C shows optimum properties for micropositioner applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partially grain-oriented (48%) ceramics of strontium bismuth tantalate (SrBi2Ta2O9) have been fabricated via conventional sintering. The grain-orientation factor of the ceramics was determined, as a function of both the sintering temperature and duration of sintering using X-ray powder diffraction (XRD) techniques. Variations in microstructural features (from acircular to plate like morphology) as a function of sintering temperature of the pellets were monitored by Scanning Electron Microscopy (SEM). The dielectric constant and loss measurements as functions of both frequency and temperature have been carried out along the directions parallel and perpendicular to the pressing axis. The anisotropy (epsilon(rn)/epsilon(rp)) associated was found to be 2.21. The effective dielectric constant of the samples with varying porosity was predicted using different dielectric mixture formulae. The grain boundary and grain interior contributions to the dielectric properties were rationalized using the impedance spectroscopy. The pyroelectric coefficient for strontium bismuth tantalate ceramic was determined along the parallel and perpendicular directions to the pressing axis and found to be -23 muC/m(2)K and -71 muC/m(2)K, respectively at 300 K. The ferroelectric properties of these partially grain-oriented ceramics are superior in the direction perpendicular to the pressing axis to that in the parallel direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass nanocomposites in the system (1-x)Li2B4O7-xBi(2)WO(6) (0 less than or equal to x less than or equal to 0.35, in molar ratio) were fabricated by splat quenching technique. The as-quenched samples were X-ray amorphous. Differential Thermal Analyses (DTA) confirmed their glassy nature. The composites on heat-treatment at 720 K yielded monophasic crystalline bismuth tungstate in lithium borate glass matrix. The average size and the spherical nature of the dispersed crystallites were assessed via High Resolution Transmission Electron Microscopy (HRTEM). The dielectric constants (epsilon(r)) of both the as-quenched and post heat-treated composites were found to increase with increase in x (bismuth tungstate content) at all the frequencies (100 Hz-40 MHz) in the temperature range 300 K-870 K. While the dielectric loss (D) decreased with increasing x. The pyroelectric coefficients of the as-quenched (consisting 20 nm sized crystallites) and 720 K heat-treated sample (x = 0.3) were determined as a function of temperature (300 K-873 K) and the values obtained at room temperature were 20 and 60 muC/m(2) K respectively. The as-quenched and heat-treated (720 K) glass nanocomposites exhibited ferroelectric (P Vs E) hysteresis loops. The remnant polarization and coercive field of the heat-treated glass nanocomposite at 300 K were respectively 2.597 muC/cm(2) and 543 V/cm. These glass nanocomposites were birefringent in the 300-873 K temperature range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ferroelectriclike hysteresis loop was obtained at room temperature for CaCu3Ti4O12 (CCTO) ceramic. The remnant polarization and coercive field for 1100 °C/5 h sintered CaCu3Ti4O12 ceramics were 0.063 μC/cm2 and 195 V/cm, respectively. Remnant polarization increased while the coercive field decreased with increase in sintering temperature/duration, implying that these were microstructural dependent. The observation of the hysteresis loop for CCTO ceramic was corroborated by its pyroelectric behavior, and the pyroelectric current at room temperature was −0.0028 nA. These findings were attributed to the presence of mixed-valent Ti ions, apart from off center displacement of Ti ions in TiO6 octahedra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4769889]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic growth of trigonal and square bipyramidal structures of LiTaO3 nanocrystallites, of 19-30 nm size, was observed when 1.5Li(2)O-2B(2)O(3)-0.5Ta(2)O(5) glasses were subjected to controlled heat treatment between 530 degrees C and 560 degrees C/3 h. X-ray diffraction and Raman spectral studies carried out on the heat-treated samples confirmed the formation of a LiTaO3 phase along with a minor phase of ferroelectric Li2B4O7. The sample that was heat-treated at 550 degrees C/3 h was found to possess similar to 26 nm sized crystallites which exhibited a pyroelectric coefficient as high as 15 nC cm(-2) K-1 which is in the same range (23 nC cm(-2) K-1) as that of single crystalline LiTaO3 at room temperature. The corresponding figures of merit that were calculated for the fast pulse detector (F-i), the large area pyroelectric detector (F-v) and the pyroelectric point detector (F-D) were 0.517 x 10(-10) m V-1, 0.244 m(2) C-1 and 1.437 x 10(-5) Pa-1/2, respectively. Glass nanocrystal composites comprising similar to 30 nm sized crystallites exhibited broad Maker fringes and the second harmonic intensity emanated from these was 0.5 times that of KDP single crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study systematically investigates the phenomenon of internal clamping in ferroelectric materials through the formation of glass-ceramic composites. Lead-free 0.715Bi(0.5)Na(0.5)TiO(3)-0.065BaTiO(3)-0.22SrTiO(3) (BNT-BT-ST) bulk ferroelectric ceramic was selected for the course of investigation. 3BaO - 3TiO(2) - B2O3 (BTBO) glass was then incorporated systematically to create sintered samples containing 0%, 2%, 4% and 6% glass (by weight). Upon glass induction features like remnant polarization, saturation polarization, hysteresis losses and coercive field could be varied as a function of glass content. Such effects were observed to benefit derived applications like enhanced energy storage density similar to 174 k J/m(3) to similar to 203 k J/m(3) and pyroelectric coefficient 5.7x10(-4) Cm-2K-1 to 6.8x10(-4) Cm-2K-1 by incorporation of 4% glass. Additionally, BNT-BT-ST depolarization temperature decreased from 457K to 431K by addition of 4% glass content. Glass incorporation could systematically increases diffuse phase transition and relaxor behavior temperature range from 70 K to 81K and 20K to 34 K, respectively when 6% and 4% glass content is added which indicates addition of glass provides better temperature stability. The most promising feature was observed to be that of dielectric response tuning. It can be also used to control (to an extent) the dielectric behavior of the host ceramic. Dielectric permittivity and losses decreased from 1278 to 705 and 0.109 to 0.107 for 6% glass, at room temperature. However this reduction in dielectric constant and loss increases pyroelectric figures of merit (FOMs) for high voltage responsivity (F-v) high detectivity (F-d) and energy harvesting (F-e) from 0.018 to 0.037 m(2)C(-1), 5.89 to 8.85 mu Pa-1/2 and 28.71 to 61.55 Jm(-3)K(-2), respectively for 4% added ceramic-glass at room temperature. Such findings can have huge implications in the field of tailoring ferroelectric response for application specific requirements. (C) 2015 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two recent scanning probe techniques were applied to investigate the bipolar twin state of 4-iodo-4'-nitrobiphenyl (INBP) crystals. Solution grown crystals of INBP show typically a morphology which does not express that of a mono-domain polar structure (Fdd2, mm2). From previous X-ray diffraction a twinning volume ratio of similar to 70 : 30 is now explained by two unipolar domains (Flack parameter: 0.075(29)) of opposite orientation of the molecular dipoles, joined by a transition zone showing a width of similar to 140 mm. Scanning pyroelectric microscopy (SPEM) demonstrates a continuous transition of the polarization P from +P into -P across the zone. Application of piezoelectric force microscopy (PFM) confirms unipolar alignment of INBP molecules down to a resolution of similar to 20 nm. A previously proposed real structure for INBP crystals built from lamellae with antiparallel alignment is thus rejected. Anomalous X-ray scattering was used to determine the absolute molecular orientation in the two domains. End faces of the polar axis 2 are thus made up by NO2 groups. Using a previously determined negative pyroelectric coefficient pc leads to a confirmation also by a SPEM analysis. Calculated values for functional group interactions (D...A), (A...A), (D...D) and the stochastic theory of polarity formation allow us to predict that NO2 groups should terminate corresponding faces. Following the present analysis, INBP may represent a first example undergoing dipole reversal upon growth to end up in a bipolar state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal transport properties—thermal diffusivity, thermal conductivity and specific heat capacity—of potassium selenate crystal have been measured through the successive phase transitions, following the photo-pyroelectric thermal wave technique. The variation of thermal conductivity with temperature through the incommensurate (IC) phase of this crystal is measured. The enhancement in thermal conductivity in the IC phase is explained in terms of heat conduction by phase modes, and the maxima in thermal conductivity during transitions is due to enhancement in the phonon mean free path and the corresponding reduction in phonon scattering. The anisotropy in thermal conductivity and its variation with temperature are reported. The variation of the specific heat with temperature through the high temperature structural transition at 745 K is measured, following the differential scanning calorimetric method. By combining the results of photo-pyroelectric thermal wave methods and differential scanning calorimetry, the variation of the specific heat capacity with temperature through all the four phases of K2SeO4 is reported. The results are discussed in terms of phonon mode softening during transitions and phonon scattering by phase modes in the IC phase.