990 resultados para pulmonary function
Resumo:
to investigate the pulmonary response to exercise of non-morbidly obese adolescents, considering the gender. a prospective cross-sectional study was conducted with 92 adolescents (47 obese and 45 eutrophic), divided in four groups according to obesity and gender. Anthropometric parameters, pulmonary function (spirometry and oxygen saturation [SatO2]), heart rate (HR), blood pressure (BP), respiratory rate (RR), and respiratory muscle strength were measured. Pulmonary function parameters were measured before, during, and after the exercise test. BP and HR were higher in obese individuals during the exercise test (p = 0.0001). SatO2 values decreased during exercise in obese adolescents (p = 0.0001). Obese males had higher levels of maximum inspiratory and expiratory pressures (p = 0.0002) when compared to obese and eutrophic females. Obese males showed lower values of maximum voluntary ventilation, forced vital capacity, and forced expiratory volume in the first second when compared to eutrophic males, before and after exercise (p = 0.0005). Obese females had greater inspiratory capacity compared to eutrophic females (p = 0.0001). Expiratory reserve volume was lower in obese subjects when compared to controls (p ≤ 0,05). obese adolescents presented changes in pulmonary function at rest and these changes remained present during exercise. The spirometric and cardiorespiratory values were different in the four study groups. The present data demonstrated that, in spite of differences in lung growth, the model of fat distribution alters pulmonary function differently in obese female and male adolescents.
Resumo:
The level of fractional exhaled nitric oxide (FENO) is significantly elevated in uncontrolled asthma and decreases after anti-inflammatory therapy The aim of this prospective study was to analyze the behavior of FENO in the follow-up and management of the inflammation in asthmatic pediatric patients treated with inhaled corticosteroids (ICS), compared to sputum cellularity, serum interleukins (IL), and pulmonary function. Twenty-six clinically stable asthmatic children aged from 6 to 18 years, previously treated or not with ICS were included. Following an international consensus (GINA), the patients were submitted to standard treatment with inhaled fluticasone for 3 months according to the severity of the disease. During this period, each patient underwent three assessments at intervals of approximately 6 weeks: Each evaluation consisted of the measurement of FENO, determination of serum interleukins IL-5, IL-10, IL-13, and interferon gamma (INF-gamma), spirometry and cytological analysis of spontaneous or induced sputum. A significant reduction in mean FENO and IL-5, without concomitant changes in FEV1, was observed along the study. There was no significant correlation between FeNO and FEV1 in the three assessments. A significant correlation between FeNO and IL-5 levels was only observed in the third assessment (r = 0.499, P=0.025). In most patients, serum IL-10, IL-13, and INF-gamma concentrations were undetectable throughout the study Sputum samples were obtained spontaneously in 11 occasions and in 56 by induction with 3% hypertonic saline solution (success rate: 50.8%), with 39 (69.9%) of them adequate for analysis. Only two of the 26 patients produced adequate samples in the three consecutive evaluations, which impaired the determination of a potential association between sputum cellularity and FeNO levels throughout the study. In conclusion, among the parameters of this study, it was difficult to perform and to interpret the serial analysis of spontaneous or induced sputum. Serum interleukins, which remained at very low or undetectable levels in most patients, were not found to be useful for therapeutic monitoring, except for IL-5 that seems to present some correlation with levels of FeNO exhaled. Monitoring of the mean FEV1 indicated no significant variations during the treatment, demonstrating that functional stability or the absence of obstruction may not reflect the adequate management of asthma. Serial measurement of FeNO seemed to best reflect the progressive anti-inflammatory action of ICS in asthma.
Resumo:
Along the aluminum refining process, alumina (Al(2)O(3)) constitutes the main source of dust. Although aluminum refinery workers present respiratory symptoms with lung functional changes, no conclusive data about lung function impairment after alumina exposure has been so far reported. We examined the pulmonary alterations of exposure to material collected in an aluminum refinery in Brazil. BALB/c mice were exposed in a whole-body chamber for 1 h to either saline (CTRL, n = 11) or to a suspension (in saline) of 8 mg/m(3) of the dust (ALUM, n = 11) both delivered by an ultrasonic nebulizer. Twenty-four hours after exposure lung mechanics were measured by the end-inflation method. Lungs were prepared for histology. ALUM showed significantly higher static elastance (34.61 +/- 5.76 cmH(2)O/mL), elastic component of viscoelasticity (8.16 +/- 1.20 cmH(2)O/mL), pressure used to overcome the resistive component of viscoelasticity (1.62 +/- 0.24 cmH(2)O), and total resistive pressure (2.21 +/- 0.49 cmH(2)O) than CTRL (27.95 +/- 3.63 cmH(2)O/mL, 6.12 +/- 0.99 cmH(2)O/mL, 1.23 +/- 0.19 cmH(2)O, and 1.68 +/- 0.23 cmH(2)O, respectively). ALUM also presented significantly higher fraction area of alveolar collapse (69.7 +/- 1.2%) and influx of polymorphonuclear cells (27.5 +/- 1.1%) in lung parenchyma than CTRL (27.2 +/- 1.1% and 14.6 +/- 0.7%, respectively). The composition analysis of the particulate matter showed high concentrations of aluminum. For the first time it was demonstrated in an experimental model that an acute exposure to dust collected in an aluminum producing facility impaired lung mechanics that could be associated with inflammation.
Resumo:
Study design: Cross-sectional study. Objective: Pulmonary functional capacity in 23 Brazilian quadriplegic subjects (ASIA A), aged 30 (9.5) years, weight 66 (10.75) kg, height 176 (7) cm, was investigated at 42 ( 64) months postinjury. Setting: University Hospital-UNICAMP, Campinas, Brazil. Method: Subjects performed forced vital capacity ( FVC) and maximal voluntary ventilation (MVV) tests while seated in their standard wheelchairs. Forced Expired Volume after 1 s (FEV1) and FVC/FEV1 ratio were calculated from these tests. Values obtained were compared to three prediction equations from the literature that are used specifically for spinal cord subjects and include different variables in their formulae, such as age, gender, height, postinjury time and injury level. Data are expressed as median (interquartile interval). Differences between values were demonstrated by median confidence interval with significance level set at a 0.05. Results: Obtained data were statistically different from prediction equation results, with FVC 3.11 ( 0.81), 4.46 (0.28), 4.16 (0.33), 4.26 (0.42); FEV1 2.77 (1.03), 3.67 (0.21), 3.66 (0.30), 3.45 (0.39) and MVV 92 (27), 154.2 (11.9), 156.6 (14),157.3 (16.8), where the first value is obtained experimentally and the second, third and fourth values correspond to predicted values. The results obtained from spirometry test in this study differed significantly from the results obtained when prediction equations were used. Conclusion: The use of prediction equations developed to estimate pulmonary function in wheelchair users significantly overestimates pulmonary function of quadriplegic individuals with complete lesions (ASIA group A), in comparison to measured values.
Resumo:
Background: Magnesium (Mg) use has the potential to promote bronchodilatation and to improve lung function in obstructive diseases. IV administration of Mg during exacerbations of chronic obstructive pulmonary disease (COPD) has led to improved peak flow. This study aimed to investigate the effects of acute IV Mg loading on respiratory parameters of stable COPD patients. Material/Methods: This was a randomized, double-blind, placebo-controlled crossover study. Twenty-two male COPD patients (64 +/- 6 years old, FEV1: 49 +/- 20%) received an IV infusion of 2 g of magnesium sulfate or placebo on two distinct occasions. Spirometry and mouth maximal respiratory pressures were obtained before and 45 minutes after the infusions. Results: Mg use led to significant changes in functional respiratory capacity (-0.48 1,95% CI: -0.96, -0.01), inspiratory capacity (0.21 1,95% CI: 0.04, 0.37). The treatment was also associated with a marginally significant decrease in residual volume (-0.47 1,95% CI: -0.96, 0.02, p=0.06). Conclusions: Acute IV Mg loading in stable COPD patients was associated with a reduction in lung hyperinflation and improvement of respiratory muscle strength. The clinical potential for chronic magnesium supplementation in COPD deserves further investigation.
Resumo:
This study seeks to assess the effect of inspiratory muscle training (IMT) on pulmonary function, respiratory muscle strength, and endurance in morbidly obese patients submitted to bariatric surgery. Thirty patients were randomly assigned to sham muscular training, or to IMT with a threshold device (40% of maximum inspiratory pressure, MIP), for 30 min/day, from the 2nd until 30th postoperative (PO) day. All of them were submitted to a standard respiratory kinesiotherapy and early deambulation protocol. Data on spirometry, maximum static respiratory pressures, and respiratory muscle endurance were collected on the PO days 2, 7, 14, and 30 in a blinded matter. IMT enabled increases in PO MIP and endurance, and an earlier recovery of the spirometry parameters FEV(1), PEF, and FEF(25-75%). Comparing to preoperative values, MIP was increased by 13% at the 30th PO day in the trained group, whereas control group had a reduction of 8%, with higher values for the IMT group (30th PO, IMT-130.6 +/- 22.9 cmH(2)O; controls-112.9 +/- 25.1 cmH(2)O; p < 0.05). Muscular endurance at the 30th PO day was increased in the trained group comparing to preoperative value (61.5 +/- 39.6 s vs 114.9 +/- 55.2 s; p < 0.05), a finding not observed in the control group (81.7 +/- 44.3 vs 95.2 +/- 42.0 s). IMT improves inspiratory muscle strength and endurance and accounts for an earlier recovery of pulmonary airflows in morbidly obese patients submitted to bariatric surgery.
Resumo:
PURPOSE: Aerobic capacity and respiratory function may be compromised in obesity, but few studies have been done in highly obese bariatric candidates. In a prospective study, these variables were documented in the preoperative period, aiming to define possible physiologic limitations in a apparently healthy and asymptomatic population. METHOD: Forty-six consecutively enrolled adults (age 39.6 ± 8.4 years, 87.0% females, body mass index /BMI 49.6 ± 6.3 kg/m² ) were analyzed. Ventilatory variables were investigated by automated spirometry, aerobic capacity was estimated by a modified Bruce test in an ergometric treadmill, and body composition was determined by bioimpedance analysis. RESULTS: Total fat was greatly increased (46.4 ± 4.6% of body weight) and body water reduced (47.3 ± 4.6 % body weight), as expected for such obese group. Spirometric findings including forced vital capacity of 3.3 ± 0.8 L and forced expiratory volume-1 second of 2.6 ± 0.6 L were usually acceptable for age and gender, but mild restrictive pulmonary insufficiency was diagnosed in 20.9%. Aerobic capacity was more markedly diminished, as reflected by very modest maximal time (4.5 ± 1.1 min) and distance (322 ±142 m) along with proportionally elevated maximal oxygen consumption (23.4 ± 9.5 mL/kg/min) achieved by these subjects during test exercise. CONCLUSIONS: 1) Cardiopulmonary evaluation was feasible and well-tolerated in this severely obese population; 2) Mean spirometric variables were not diminished in this study, but part of the population displayed mild restrictive changes; 3) Exercise tolerance was very negatively influenced by obesity, resulting in reduced endurance and excessive metabolic cost for the treadmill run; 4) More attention to fitness and aerobic capacity is recommended for seriously obese bariatric candidates;
Resumo:
Objective: To evaluate the impact that the distribution of emphysema has on clinical and functional severity in patients with COPD. Methods: The distribution of the emphysema was analyzed in COPD patients, who were classified according to a 5-point visual classification system of lung CT findings. We assessed the influence of emphysema distribution type on the clinical and functional presentation of COPD. We also evaluated hypoxemia after the six-minute walk test (6MWT) and determined the six-minute walk distance (6MWD). Results: Eighty-six patients were included. The mean age was 65.2 ± 12.2 years, 91.9% were male, and all but one were smokers (mean smoking history, 62.7 ± 38.4 pack-years). The emphysema distribution was categorized as obviously upper lung-predominant (type 1), in 36.0% of the patients; slightly upper lung-predominant (type 2), in 25.6%; homogeneous between the upper and lower lung (type 3), in 16.3%; and slightly lower lung-predominant (type 4), in 22.1%. Type 2 emphysema distribution was associated with lower FEV1 , FVC, FEV1 /FVC ratio, and DLCO. In comparison with the type 1 patients, the type 4 patients were more likely to have an FEV1 < 65% of the predicted value (OR = 6.91, 95% CI: 1.43-33.45; p = 0.016), a 6MWD < 350 m (OR = 6.36, 95% CI: 1.26-32.18; p = 0.025), and post-6MWT hypoxemia (OR = 32.66, 95% CI: 3.26-326.84; p = 0.003). The type 3 patients had a higher RV/TLC ratio, although the difference was not significant. Conclusions: The severity of COPD appears to be greater in type 4 patients, and type 3 patients tend to have greater hyperinflation. The distribution of emphysema could have a major impact on functional parameters and should be considered in the evaluation of COPD patients.
Resumo:
Retrospective single institution analysis of all patients undergoing sleeve lobectomy or pneumonectomy between 2000 and 2005. Seventy-eight patients underwent pneumonectomy (65 patients <70 years, 13 patients >70 years) and 69 sleeve lobectomy (50 patients <70 years, 19 patients >70 years). Pre-existing co-morbidity, surgical indication and induction therapy was similarly distributed between treatment by age-groups. In patients <70 years, pneumonectomy and sleeve lobectomy resulted in a 30-day mortality of 3% vs. 0 and an overall complication rate of 26% vs. 44%, respectively. In patients >70 years, pneumonectomy and sleeve lobectomy resulted in a 30-day mortality of 15% vs. 0 and an overall complication rate of 23% vs. 32%. In both age groups, pneumonectomy was associated with more airway complications (NS) and a significantly higher postoperative loss of FEV(1) than sleeve lobectomy (P<0.0001, P<0.03). Age per se did not influence the loss of FEV(1) and DLCO for a given type of resection. Sleeve lobectomy may have a therapeutic advantage over pneumonectomy in the postoperative course of elderly patients.
Resumo:
To investigate the role of nitric oxide in human sepsis, ten patients with severe septic shock requiring vasoactive drug therapy and mechanical ventilation were enrolled in a prospective, open, non-randomized clinical trial to study the acute effects of methylene blue, an inhibitor of guanylate cyclase. Hemodynamic and metabolic variables were measured before and 20, 40, 60, and 120 min after the start of a 1-h intravenous infusion of 4 mg/kg of methylene blue. Methylene blue administration caused a progressive increase in mean arterial pressure (60 [55-70] to 70 [65-100] mmHg, median [25-75th percentiles]; P<0.05), systemic vascular resistance index (649 [479-1084] to 1066 [585-1356] dyne s-1 cm-5 m-2; P<0.05) and the left ventricular stroke work index (35 [27-47] to 38 [32-56] g m-1 m-2; P<0.05) from baseline to 60 min. The pulmonary vascular resistance index increased from 150 [83-207] to 186 [121-367] dyne s-1 cm-5 m-2 after 20 min (P<0.05). Mixed venous saturation decreased from 65 [56-76] to 63 [55-69]% (P<0.05) after 60 min. The PaO2/FiO2 ratio decreased from 168 [131-215] to 132 [109-156] mmHg (P<0.05) after 40 min. Arterial lactate concentration decreased from 5.1 ± 2.9 to 4.5 ± 2.1 mmol/l, mean ± SD (P<0.05) after 60 min. Heart rate, cardiac filling pressures, cardiac output, oxygen delivery and consumption did not change. Methylene blue administration was safe and no adverse effect was observed. In severe human septic shock, a short infusion of methylene blue increases systemic vascular resistance and may improve myocardial function. Although there was a reduction in blood lactate concentration, this was not explained by an improvement in tissue oxygenation, since overall oxygen availability did not change. However, there was a significant increase in pulmonary vascular tone and a deterioration in gas exchange. Further studies are needed to demonstrate if nitric oxide blockade with methylene blue can be safe for patients with septic shock and, particularly, if it has an effect on pulmonary function.
Resumo:
This prospective study analyzed the involvement of the autonomic nervous system in pulmonary and cardiac function by evaluating cardiovascular reflex and its correlation with pulmonary function abnormalities of type 2 diabetic patients. Diabetic patients (N = 17) and healthy subjects (N = 17) were evaluated by 1) pulmonary function tests including spirometry, He-dilution method, N2 washout test, and specific airway conductance (SGaw) determined by plethysmography before and after aerosol administration of atropine sulfate, and 2) autonomic cardiovascular activity by the passive tilting test and the magnitude of respiratory sinus arrhythmia (RSA). Basal heart rate was higher in the diabetic group (87.8 ± 11.2 bpm; mean ± SD) than in the control group (72.9 ± 7.8 bpm, P<0.05). The increase of heart rate at 5 s of tilting was 11.8 ± 6.5 bpm in diabetic patients and 17.6 ± 6.2 bpm in the control group (P<0.05). Systemic arterial pressure and RSA analysis did not reveal significant differences between groups. Diabetes intragroup analysis revealed two behaviors: 10 patients with close to normal findings and 7 with significant abnormalities in terms of RSA, with the latter subgroup presenting one or more abnormalities in other tests and clear evidence of cardiovascular autonomic dysfunction. End-expiratory flows were significantly lower in diabetic patients than in the control group (P<0.05). Pulmonary function tests before and after atropine administration demonstrated comparable responses by both groups. Type 2 diabetic patients have cardiac autonomic dysfunction that is not associated with bronchomotor tone alterations, probably reflecting a less severe impairment than that of type 1 diabetes mellitus. Yet, a reduction of end-expiratory flow was detected.
Resumo:
The objective of this study was to evaluate cardiorespiratory fitness and pulmonary function and the relationship with metabolic variables and C-reactive protein (CRP) plasma levels in individuals with diabetes mellitus (DM). Nineteen men with diabetes and 19 age- and gender-matched control subjects were studied. All individuals were given incremental cardiopulmonary exercise and pulmonary function tests. In the exercise test, maximal workload (158.3±22.3vs 135.1±25.2, P=0.005), peak heart rate (HRpeak: 149±12 vs 139±10, P=0.009), peak oxygen uptake (VO2peak: 24.2±3.2 vs18.9±2.8, P<0.001), and anaerobic threshold (VO2VT: 14.1±3.4 vs 12.2±2.2, P=0.04) were significantly lower in individuals with diabetes than in control subjects. Pulmonary function test parameters, blood pressure, lipid profile (triglycerides, HDL, LDL, and total cholesterol), and CRP plasma levels were not different in control subjects and individuals with DM. No correlations were observed between hemoglobin A1C (HbA1c), CRP and pulmonary function test and cardiopulmonary exercise test performance. In conclusion, the results demonstrate that nonsmoking individuals with DM have decreased cardiorespiratory fitness that is not correlated with resting pulmonary function parameters, HbA1c, and CRP plasma levels.