1000 resultados para prosody analysis
Resumo:
We examine methodologies and methods that apply to multi-level research in the learning sciences. In so doing we describe how multiple theoretical frameworks informs the use of different methods that apply to social levels involving space-time relationships that are not accessible consciously as social life is enacted. Most of the methods involve analyses of video and audio files. Within a framework of interpretive research we present a methodology of event-oriented social science, which employs video ethnography, narrative, conversation analysis, prosody analysis, and facial expression analysis. We illustrate multi-method research in an examination of the role of emotions in teaching and learning. Conversation and prosody analyses augment facial expression analysis and ethnography. We conclude with an exploration of ways in which multi-level studies can be complemented with neural level analyses.
Resumo:
This study examined emotional climate in relation to the teaching and learning of grade 7 science. A multi-method and multi-theoretic approach used sociocultural frameworks as a foundation for interpretive research, conversation analysis, prosody analysis, and studies of nonverbal conduct. Emotional climate varied continuously throughout a lesson. Dialogues occurred and afforded learning when interactions between the teacher and students were fluent and included humour and collective effervescence. Emotional climate was negatively valenced when the teacher and/or students endeavoured to establish and maintain power by restricting others’ participation to spectator roles. The teacher’s endeavours to maintain and establish control over students were potentially detrimental to teaching and learning, teachers and learners. This type of teaching gradually evolved into a form we referred to as cranky teaching, whereby the teacher and her students showed signs of frustration and the enacted teaching and learning roles lacked fluency. The methods we pioneered in the present study might be helpful for other teachers who wish to participate in research on their classes to ascertain what works and should be strengthened, and identify practices and rituals that are deleterious and in need of change.
Resumo:
Mode of access: Internet.
Comparative Analysis of Russian and French Prosodies: Theoretical, Experimental and Applied Aspects"
Resumo:
Experience shows that in teaching the pronunciation of a foreign language, it is the native syllable stereotype that resists correction most strongly. This is because the syllable is the basic unit of the perception and production of speech, and syllabic production is highly automatic and to some degree determines the prosody of speech at all levels: accent, rhythm, phrase, etc. The results of psycho-physiological studies show that the human acoustic analyser is a typical contemplator organ and new acoustic qualities are perceived through their inclusion into the already existing system of values characteristic to the mother tongue. This results in the adaptation of the perception and so production of foreign speech to native patterns. The less conscious the perception of the unit and the more 'primitive' its status, the greater the degree of its auditory assimilation, and the syllable is certainly among the less controllable linguistic units. The group carried out a complex investigation of the French and Russian languages at the level of syllable realisation, focusing on the stressed syllable of both open and closed types. The useful acoustic characteristics of the French/Russian syllable pattern were determined through identifying a typical syllable pattern within the system of each of the two languages, comparing these patterns to establish their contrasting features, and observing and systematising deviations from the pattern typical of the French/Russian language teaching situation. The components of the syllable pattern shown to need particular attention in teaching French pronunciation to Russian native speakers were intensity, fundamental frequency, and duration. The group then developed a method of correction which combines the auditory and visual canals of sound signal perception and tested this method with groups of Russian students of different levels.
Resumo:
Prosody or speech melody subserves linguistic (e.g., question intonation) and emotional functions in speech communication. Findings from lesion studies and imaging experiments suggest that, depending on function or acoustic stimulus structure, prosodic speech components are differentially processed in the right and left hemispheres. This direct current (DC) potential study investigated the linguistic processing of digitally manipulated pitch contours of sentences that carried an emotional or neutral intonation. Discrimination of linguistic prosody was better for neutral stimuli as compared to happily as well as fearfully spoken sentences. Brain activation was increased during the processing of happy sentences as compared to neutral utterances. Neither neutral nor emotional stimuli evoked lateralized processing in the left or right hemisphere, indicating bilateral mechanisms of linguistic processing for pitch direction. Acoustic stimulus analysis suggested that prosodic components related to emotional intonation, such as pitch variability, interfered with linguistic processing of pitch course direction.
Resumo:
Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
Resumo:
The time for conducting Preventive Maintenance (PM) on an asset is often determined using a predefined alarm limit based on trends of a hazard function. In this paper, the authors propose using both hazard and reliability functions to improve the accuracy of the prediction particularly when the failure characteristic of the asset whole life is modelled using different failure distributions for the different stages of the life of the asset. The proposed method is validated using simulations and case studies.
Resumo:
The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.