992 resultados para proportional (P) controllers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most cases, the cost of a control system increases based on its complexity. Proportional (P) controller is the simplest and most intuitive structure for the implementation of linear control systems. The difficulty to find the stability range of feedback systems with P controllers, using the Routh-Hurwitz criterion, increases with the order of the plant. For high order plants, the stability range cannot be easily obtained from the investigation of the coefficient signs in the first column of the Routh's array. A direct method for the determination of the stability range is presented. The method is easy to understand, to compute, and to offer the students a better comprehension on this subject. A program in MATLAB language, based on the proposed method, design examples, and class assessments, is provided in order to help the pedagogical issues. The method and the program enable the user to specify a decay rate and also extend to proportional-integral (PI), proportional-derivative (PD), and proportional-integral-derivative (PID) controllers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to minimize the number of load shedding in a Microgrid during autonomous operation, islanded neighbour microgrids can be interconnected if they are on a self-healing network and an extra generation capacity is available in Distributed Energy Resources (DER) in one of the microgrids. In this way, the total load in the system of interconnected microgrids can be shared by all the DERs within these microgrids. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and microgrid levels. In this chapter, first a hierarchical control structure is discussed for interconnecting the neighbour autonomous microgrids where the introduced primary control level is the main focus. Through the developed primary control level, it demonstrates how the parallel DERs in the system of multiple interconnected autonomous microgrids can properly share the load in the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralized power sharing algorithm based on droop control. The switching in the converters is controlled using a linear quadratic regulator based state feedback which is more stable than conventional proportional integrator controllers and this prevents instability among parallel DERs when two microgrids are interconnected. The efficacy of the primary control level of DERs in the system of multiple interconnected autonomous microgrids is validated through simulations considering detailed dynamic models of DERs and converters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The specific objective of this paper is to develop multivariable controllers that would achieve asymptotic regulation in the presence of parameter variations and disturbance inputs for a tubular reactor used in ammonia synthesis. A ninth order state space model with three control inputs and two disturbance inputs is generated from the nonlinear distributed model using linearization and lumping approximations. Using this model, an approach for control system design is developed keeping in view the imperfections of the model and the measurability of the state variables. Specifically, the design of feedforward and robust integral controllers using state and output feedback is considered. Also, the design of robust multiloop proportional integral controllers is presented. Finally the performance of these controllers is evaluated through simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To minimise the number of load sheddings in a microgrid (MG) during autonomous operation, islanded neighbour MGs can be interconnected if they are on a self-healing network and an extra generation capacity is available in the distributed energy resources (DER) of one of the MGs. In this way, the total load in the system of interconnected MGs can be shared by all the DERs within those MGs. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and MG levels. In this study, first, a hierarchical control structure is discussed for interconnecting the neighbour autonomous MGs where the introduced primary control level is the main focus of this study. Through the developed primary control level, this study demonstrates how the parallel DERs in the system of multiple interconnected autonomous MGs can properly share the load of the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralised power sharing algorithm based on droop control. DER converters are controlled based on a per-phase technique instead of a conventional direct-quadratic transformation technique. In addition, linear quadratic regulator-based state feedback controllers, which are more stable than conventional proportional integrator controllers, are utilised to prevent instability and weak dynamic performances of the DERs when autonomous MGs are interconnected. The efficacy of the primary control level of the DERs in the system of multiple interconnected autonomous MGs is validated through the PSCAD/EMTDC simulations considering detailed dynamic models of DERs and converters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations of four tree species occurring in both planting mixtures were compared between a legume-dominated, species-poor direct seeding mixture of early-successional species ("legume mixture"), and a species-diverse, legume-poor mixture of all successional groups ("diverse mixture"). After 7 years, the legume mixture had 6-fold higher abundance of N(2)-fixing trees, 177% higher total tree basal area, 22% lower litter C/N, six-fold higher in situ soil resin-nitrate, and 40% lower in situ soil resin-P, compared to the diverse mixture. In the legume mixture, non-N(2)-fixing legume Schizolobium parahyba (Fabaceae-Caesalpinioideae) had significantly lower proportional N resorption, and both naturally regenerating non-legume trees had significantly higher leaf N concentrations, and higher proportional P resorption, than in the diverse mixture. This demonstrate forms of plastic adjustment in all three non-N(2)-fixing species to diverged nutrient relations between mixtures. By contrast, leaf nutrient relations in N(2)-fixing Enterolobium contortisiliquum (Fabaceae-Mimosoideae) did not respond to planting mixtures. Rapid N accumulation in the legume mixture caused excess soil nitrification over nitrate immobilization and tighter P recycling compared with the diverse mixture. The legume mixture succeeded in accelerating tree growth and canopy closure, but may imply periods of N losses and possibly P limitation. Incorporation of species with efficient nitrate uptake and P mobilization from resistant soil pools offers potential to optimize these tradeoffs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is on modeling and simulation for an offshore wind system equipped with a semi-submersible floating platform, a wind turbine, a permanent magnet synchronous generator, a multiple point clamped four level or five level full-power converter, a submarine cable and a second order filter. The drive train is modeled by three mass model considering the resistant stiffness torque, structure and tower in deep water due to the moving surface elevation. The system control uses PWM by space vector modulation associated with sliding mode and proportional integral controllers. The electric energy is injected into the electric grid either by an alternated current link or by a direct current link. The model is intend to be a useful tool for unveil the behavior and performance of the offshore wind system, especially for the multiple point clamped full-power converter, under normal operation or under malfunctions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

I present a novel design methodology for the synthesis of automatic controllers, together with a computational environment---the Control Engineer's Workbench---integrating a suite of programs that automatically analyze and design controllers for high-performance, global control of nonlinear systems. This work demonstrates that difficult control synthesis tasks can be automated, using programs that actively exploit and efficiently represent knowledge of nonlinear dynamics and phase space and effectively use the representation to guide and perform the control design. The Control Engineer's Workbench combines powerful numerical and symbolic computations with artificial intelligence reasoning techniques. As a demonstration, the Workbench automatically designed a high-quality maglev controller that outperforms a previous linear design by a factor of 20.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we use the Hermite-Biehler theorem to establish results on the design of proportional plus integral plus derivative (PID) controllers for a class of time delay systems. Using the property of interlacing at high frequencies of the class of systems considered and linear programming we obtain the set of all stabilizing PID controllers. As far as we know, previous results on the synthesis of PID controllers rely on the solution of transcendental equations. This paper also extends previous results on the synthesis of proportional controllers for a class of delay systems of retarded type to a larger class of delay systems. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Positioning and orientation precision of a multirotor aerial robot can be increased by using additional control loops for each of the driving units. As a result, one can eliminate lack of balance between true thrust forces. A control performance comparison of two proposed thrust controllers, namely robust controller designed with coefficient diagram method (CDM) and proportional, integral and derivative (PID) controller tuned with pole-placement law, is presented in the paper. The research has been conducted with respect to model/plant matching uncertainty and with the use of antiwindup compensators for a simple motor-rotor model approximated by first-order inertia plus delay. From the obtained simulation results one concludes that appropriate choice of AWC compensator improves tracking performance and increases robustness against parametric uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numerical solution of stochastic differential equations (SDEs) has been focused recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the "best" choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Player experiences and expectations are connected. The presumptions players have about how they control their gameplay interactions may shape the way they play and perceive videogames. A successfully engaging player experience might rest on the way controllers meet players' expectations. We studied player interaction with novel controllers on the Sony PlayStation Wonderbook, an augmented reality (AR) gaming system. Our goal was to understand player expectations regarding game controllers in AR game design. Based on this preliminary study, we propose several interaction guidelines for hybrid input from both augmented reality and physical game controllers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Better operational control of water networks can help reduce leakage, maintain pressure, and control flow. Proportional integral derivative (PID) controllers, with proper fine-tuning, can help water utility operators achieve targets faster without creating undue transients. The authors compared three tuning methods, in different test situations, involving flow and level control to different reservoirs. Although target values were reached with all three tuning methods, the methods’ performances varied significantly. The lowest performer among the three was the method most widely used in the industry—standard tuning by the Ziegler-Nichols method. Achieving better results was offline tuning by genetic algorithms. Achieving the best control, though, was a fuzzy logic–based online tuning approach—the FZPID controller. The FZPID controller had fewer overshoots and took significantly less time to tune the gains for each problem. This new tuning approach for PID controllers can be applied to a variety of problems and can increase the performance of water networks of any size and structure

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specific objective of this paper is to develop multiloop controllers that would achieve asymptotic regulation in the presence of parameter variations and disturbance inputs for a tubular reactor used in ammonia synthesis. The dynamic model considered here has nine state variables, two control inputs, and two outputs. A systematic procedure for pairing the two inputs with the corresponding two outputs is presented. The two multiloop proportional controllers so configured are designed via the parameter plane method. This economic configuration of controllers maintains the temperature profile almost at the optimal value whereas the point controllers fail to do so.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new solution for unbalanced and nonlinear loads in terms of power circuit topology and controller structure is proposed in this paper. A three-phase four-wire high-frequency ac-link inverter is adopted to cater to such loads. Use of high-frequency transformer results in compact and light-weight systems. The fourth wire is taken out from the midpoint of the isolation transformer in order to avoid the necessity of an extra leg. This makes the converter suitable for unbalanced loads and eliminates the requirements of bulky capacitor in half-bridge inverter. The closed-loop control is carried out in stationary reference frame using proportional + multiresonant controller (three separate resonant controller for fundamental, fifth and seventh harmonic components). The limitations on improving steady-state response of harmonic resonance controllers is investigated and mitigated using a lead-lag compensator. The proposed voltage controller is used along with an inner current loop to ensure excellent performance of the power converter. Simulation studies and experimental results with 1 kVA prototype under nonlinear and unbalanced loading conditions validate the proposed scheme.