900 resultados para probabilistic rules
Resumo:
We consider a probabilistic approach to the problem of assigning k indivisible identical objects to a set of agents with single-peaked preferences. Using the ordinal extension of preferences, we characterize the class of uniform probabilistic rules by Pareto efficiency, strategy-proofness, and no-envy. We also show that in this characterization no-envy cannot be replaced by anonymity. When agents are strictly risk averse von-Neumann-Morgenstern utility maximizers, then we reduce the problem of assigning k identical objects to a problem of allocating the amount k of an infinitely divisible commodity.
Resumo:
Scoring rules that elicit an entire belief distribution through the elicitation of point beliefsare time-consuming and demand considerable cognitive e¤ort. Moreover, the results are validonly when agents are risk-neutral or when one uses probabilistic rules. We investigate a classof rules in which the agent has to choose an interval and is rewarded (deterministically) onthe basis of the chosen interval and the realization of the random variable. We formulatean e¢ ciency criterion for such rules and present a speci.c interval scoring rule. For single-peaked beliefs, our rule gives information about both the location and the dispersion of thebelief distribution. These results hold for all concave utility functions.
Resumo:
We propose a new modelling framework suitable for the description of atmospheric convective systems as a collection of distinct plumes. The literature contains many examples of models for collections of plumes in which strong simplifying assumptions are made, a diagnostic dependence of convection on the large-scale environment and the limit of many plumes often being imposed from the outset. Some recent studies have sought to remove one or the other of those assumptions. The proposed framework removes both, and is explicitly time-dependent and stochastic in its basic character. The statistical dynamics of the plume collection are defined through simple probabilistic rules applied at the level of individual plumes, and van Kampen's system size expansion is then used to construct the macroscopic limit of the microscopic model. Through suitable choices of the microscopic rules, the model is shown to encompass previous studies in the appropriate limits, and to allow their natural extensions beyond those limits.
Resumo:
There are several scoring rules that one can choose from in order to score probabilistic forecasting models or estimate model parameters. Whilst it is generally agreed that proper scoring rules are preferable, there is no clear criterion for preferring one proper scoring rule above another. This manuscript compares and contrasts some commonly used proper scoring rules and provides guidance on scoring rule selection. In particular, it is shown that the logarithmic scoring rule prefers erring with more uncertainty, the spherical scoring rule prefers erring with lower uncertainty, whereas the other scoring rules are indifferent to either option.
Resumo:
We consider multistage stochastic linear optimization problems combining joint dynamic probabilistic constraints with hard constraints. We develop a method for projecting decision rules onto hard constraints of wait-and-see type. We establish the relation between the original (in nite dimensional) problem and approximating problems working with projections from di erent subclasses of decision policies. Considering the subclass of linear decision rules and a generalized linear model for the underlying stochastic process with noises that are Gaussian or truncated Gaussian, we show that the value and gradient of the objective and constraint functions of the approximating problems can be computed analytically.
Resumo:
In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.
Resumo:
Action systems are a construct for reasoning about concurrent, reactive systems, in which concurrent behaviour is described by interleaving atomic actions. Sere and Troubitsyna have proposed an extension to action systems in which actions may be expressed and composed using discrete probabilistic choice as well as demonic nondeterministic choice. In this paper we develop a trace-based semantics for probabilistic action systems. This semantics provides a simple theoretical base on which practical refinement rules for probabilistic action systems may be justified.
Resumo:
One of the most important problems in the theory of cellular automata (CA) is determining the proportion of cells in a specific state after a given number of time iterations. We approach this problem using patterns in preimage sets - that is, the set of blocks which iterate to the desired output. This allows us to construct a response curve - a relationship between the proportion of cells in state 1 after niterations as a function of the initial proportion. We derive response curve formulae for many two-dimensional deterministic CA rules with L-neighbourhood. For all remaining rules, we find experimental response curves. We also use preimage sets to classify surjective rules. In the last part of the thesis, we consider a special class of one-dimensional probabilistic CA rules. We find response surface formula for these rules and experimental response surfaces for all remaining rules.
Resumo:
Abstract: Long-term exposure of skylarks to a fictitious insecticide and of wood mice to a fictitious fungicide were modelled probabilistically in a Monte Carlo simulation. Within the same simulation the consequences of exposure to pesticides on reproductive success were modelled using the toxicity-exposure-linking rules developed by R.S. Bennet et al. (2005) and the interspecies extrapolation factors suggested by R. Luttik et al.(2005). We built models to reflect a range of scenarios and as a result were able to show how exposure to pesticide might alter the number of individuals engaged in any given phase of the breeding cycle at any given time and predict the numbers of new adults at the season’s end.
Resumo:
We investigate the critical behaviour of a probabilistic mixture of cellular automata (CA) rules 182 and 200 (in Wolfram`s enumeration scheme) by mean-field analysis and Monte Carlo simulations. We found that as we switch off one CA and switch on the other by the variation of the single parameter of the model, the probabilistic CA (PCA) goes through an extinction-survival-type phase transition, and the numerical data indicate that it belongs to the directed percolation universality class of critical behaviour. The PCA displays a characteristic stationary density profile and a slow, diffusive dynamics close to the pure CA 200 point that we discuss briefly. Remarks on an interesting related stochastic lattice gas are addressed in the conclusions.
Resumo:
In this paper, the presynaptic rule, a classical rule for hebbian learning, is revisited. It is shown that the presynaptic rule exhibits relevant synaptic properties like synaptic directionality, and LTP metaplasticity (long-term potentiation threshold metaplasticity). With slight modifications, the presynaptic model also exhibits metaplasticity of the long-term depression threshold, being also consistent with Artola, Brocher and Singer’s (ABS) influential model. Two asymptotically equivalent versions of the presynaptic rule were adopted for this analysis: the first one uses an incremental equation while the second, conditional probabilities. Despite their simplicity, both types of presynaptic rules exhibit sophisticated biological properties, specially the probabilistic version
Resumo:
Back and von Wright have developed algebraic laws for reasoning about loops in the refinement calculus. We extend their work to reasoning about probabilistic loops in the probabilistic refinement calculus. We apply our algebraic reasoning to derive transformation rules for probabilistic action systems. In particular we focus on developing data refinement rules for probabilistic action systems. Our extension is interesting since some well known transformation rules that are applicable to standard programs are not applicable to probabilistic ones: we identify some of these important differences and we develop alternative rules where possible. In particular, our probabilistic action system data refinement rules are new.
Resumo:
Our research has shown that schedules can be built mimicking a human scheduler by using a set of rules that involve domain knowledge. This chapter presents a Bayesian Optimization Algorithm (BOA) for the nurse scheduling problem that chooses such suitable scheduling rules from a set for each nurse’s assignment. Based on the idea of using probabilistic models, the BOA builds a Bayesian network for the set of promising solutions and samples these networks to generate new candidate solutions. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed algorithm may be suitable for other scheduling problems.
Resumo:
Background: The post-genomic era has brought new challenges regarding the understanding of the organization and function of the human genome. Many of these challenges are centered on the meaning of differential gene regulation under distinct biological conditions and can be performed by analyzing the Multiple Differential Expression (MDE) of genes associated with normal and abnormal biological processes. Currently MDE analyses are limited to usual methods of differential expression initially designed for paired analysis. Results: We proposed a web platform named ProbFAST for MDE analysis which uses Bayesian inference to identify key genes that are intuitively prioritized by means of probabilities. A simulated study revealed that our method gives a better performance when compared to other approaches and when applied to public expression data, we demonstrated its flexibility to obtain relevant genes biologically associated with normal and abnormal biological processes. Conclusions: ProbFAST is a free accessible web-based application that enables MDE analysis on a global scale. It offers an efficient methodological approach for MDE analysis of a set of genes that are turned on and off related to functional information during the evolution of a tumor or tissue differentiation. ProbFAST server can be accessed at http://gdm.fmrp.usp.br/probfast.
Resumo:
We use QCD sum rules (QCDSR) to calculate the width of the radiative decay of the meson X(3872), assumed to be a mixture between charmonium and exotic molecular [c (q) over bar][q (c) over bar] states with J(PC) = 1(++). We find that in a small range for the values of the mixing angle, 5 degrees <= theta <= 13 degrees, we get the branching ratio Gamma(X -> J/psi gamma)/Gamma(X -> J/psi pi(+)pi(-)) = 0.19 +/- 0.13, which is in agreement, with the experimental value. This result is compatible with the analysis of the mass and decay width of the mode J/psi(n pi) performed in the same approach.