920 resultados para power-law fluid
Resumo:
The problem of bubble contraction in a Hele-Shaw cell is studied for the case in which the surrounding fluid is of power-law type. A small perturbation of the radially symmetric problem is first considered, focussing on the behaviour just before the bubble vanishes, it being found that for shear-thinning fluids the radially symmetric solution is stable, while for shear-thickening fluids the aspect ratio of the bubble boundary increases. The borderline (Newtonian) case considered previously is neutrally stable, the bubble boundary becoming elliptic in shape with the eccentricity of the ellipse depending on the initial data. Further light is shed on the bubble contraction problem by considering a long thin Hele-Shaw cell: for early times the leading-order behaviour is one-dimensional in this limit; however, as the bubble contracts its evolution is ultimately determined by the solution of a Wiener-Hopf problem, the transition between the long-thin limit and the extinction limit in which the bubble vanishes being described by what is in effect a similarity solution of the second kind. This same solution describes the generic (slit-like) extinction behaviour for shear-thickening fluids, the interface profiles that generalise the ellipses that characterise the Newtonian case being constructed by the Wiener-Hopf calculation.
Resumo:
Numerically investigation of free convection heat transfer in a differentially heated trapezoidal cavity filled with non-Newtonian Power-law fluid has been performed in this study. The left inclined surface is uniformly heated whereas the right inclined surface is maintained as uniformly cooled. The top and bottom surfaces are kept adiabatic with initially quiescent fluid inside the enclosure. Finite volume based commercial software FLUENT 14.5 is used to solve the governing equations. Dependency of various flow parameters of fluid flow and heat transfer is analyzed including Rayleigh number, Ra ranging from 10^5 to 10^7, Prandtl number, Pr of 100 to 10,000 and power index, n of 0.6 to 1.4. Outcomes have been reported in terms of isotherms, streamline, and local Nusselt number for various Ra, Pr, n and inclined angles. Grid sensitivity analysis is performed and numerically obtained results have been compared with those results available in the literature and found good agreement.
Resumo:
The steady flow of a power law fluid in annuli with porous walls is investigated. The solution for the axial velocity component is obtained as a power series in terms of the cross flow Reynolds number, the first term of the series giving the solution for the case of the solid wall annulus. The cross flow is restricted to be such that the rate of injection of fluid at one wall of the annulus is equal to the rate of suction at the other wall and also we have considered only very small values of the cross flow velocity. The velocity profiles are drawn for different values of n and for different gaps and the results are discussed in detail. The behaviour of the average flux, in different eases is also discussed.
Resumo:
In this work, the drag reduction by gas injection for power-law fluid flow in stratified and slug flow regimes has been studied. Experimentswere conducted to measure the pressure gradient within air/CMC solutions in a horizontal Plexiglas pipe that had a diameter of 50mm and a length of 30 m. The drag reduction ratio in stratified flow regime was predicted using the two-fluid model. The results showed that the drag reduction should occur over the large range of the liquid holdup when the flow behaviour index remained at the low value. Furthermore, for turbulent gas-laminar liquid stratified flow, the drag reduction by gas injection for Newtonian fluid was more effective than that for shear-shinning fluid, when the dimensionless liquid height remained in the area of high value. The pressure gradient model for a gas/Newtonian liquid slug flow was extended to liquids possessing the Ostwald–de Waele power law model. The proposed model was validated against 340 experimental data point over a wide range of operating conditions, fluid characteristics and pipe diameters. The dimensionless pressure drop predicted was well inside the 20% deviation region for most of the experimental data. These results substantiated the general validity of the model presented for gas/non-Newtonian two-phase slug flows.
Resumo:
Instabilities of fluid flows have traditionally been investigated by normal mode analysis, i.e. by linearizing the equations of flow and testing for unstable eigenvalues of the linearized problem. However, the results of eigenvalue analysis agree poorly in many cases with experiments, especially for shear flows. In this paper we study the instabilities of two-dimensional Couette flow of a polymeric fluid in the framework of non-modal stability theory rather than normal mode analysis. A power-law model is used to describe the polymeric liquid. We focus on the response to external excitations and initial conditions by examining the pseudospectra structures and the transient energy growths. For both Newtonian and non-Newtonian flows, the results show that there can be a rather large transient growth even though the linear operator of Couette flow has no unstable eigenvalue. The effects of non-Newtonian viscosity on the transient behaviors are examined in this study. The results show that the "shear-thinning/shear-thickening" effect increases/decreases the amplitude of responses to external excitations and initial conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The selection of appropriate analogue materials is a central consideration in the design of realistic physical models. We investigate the rheology of highly-filled silicone polymers in order to find materials with a power-law strain-rate softening rheology suitable for modelling rock deformation by dislocation creep and report the rheological properties of the materials as functions of the filler content. The mixtures exhibit strain-rate softening behaviour but with increasing amounts of filler become strain-dependent. For the strain-independent viscous materials, flow laws are presented while for strain-dependent materials the relative importance of strain and strain rate softening/hardening is reported. If the stress or strain rate is above a threshold value some highly-filled silicone polymers may be considered linear visco-elastic (strain independent) and power-law strain-rate softening. The power-law exponent can be raised from 1 to ~3 by using mixtures of high-viscosity silicone and plasticine. However, the need for high shear strain rates to obtain the power-law rheology imposes some restrictions on the usage of such materials for geodynamic modelling. Two simple shear experiments are presented that use Newtonian and power-law strain-rate softening materials. The results demonstrate how materials with power-law rheology result in better strain localization in analogue experiments.
Resumo:
Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.
Resumo:
This paper reports on the investigations of laminar free convection heat transfer from vertical cylinders and wires whose surface temperature varies along the height according to the relation TW - T∞ = Nxn. The set of boundary layer partial differential equations and the boundary conditions are transformed to a more amenable form and solved by the process of successive substitution. Numerical solutions of the first approximated equations (two-point nonlinear boundary value type of ordinary differential equations) bring about the major contribution to the problem (about 95%), as seen from the solutions of higher approximations. The results reduce to those for the isothermal case when n=0. Criteria for classifying the cylinders into three broad categories, viz., short cylinders, long cylinders and wires, have been developed. For all values of n the same criteria hold. Heat transfer correlations obtained for short cylinders (which coincide with those of flat plates) are checked with those available in the literature. Heat transfer and fluid flow correlations are developed for all the regimes.
Resumo:
The problem of combined convection from vertical surfaces in a porous medium saturated with a power-law type non-Newtonian fluid is investigated. The transformed conservation laws are solved numerically for the case of variable surface heat flux conditions. Results for the details of the velocity and temperature fields as well as the Nusselt number have been presented. The viscosity index ranged from 0.5 to 2.0.
Resumo:
Numerical results are presented for the free-convection boundary-layer equations of the Ostwald de-Waele non-Newtonian power-law type fluids near a three-dimensional (3-D) stagnation point of attachment on an isothermal surface. The existence of dual solutions that are three-dimensional in nature have been verified by means of a numerical procedure. An asymptotic solution for very large Prandtl numbers has also been derived. Solutions are presented for a range of values of the geometric curvature parameter c, the power-law index n, and the Prandtl number Pr.
Resumo:
The present work has been carried out to investigate on the average void fraction of gas/non-Newtonian fluids flow in downward inclined pipes. The influences of pipe inclination angle on the average void fraction were studied experimentally. A simple correlation, which incorporated the method of Vlachos et al. for gas/Newtonain fluid horizontal flow, the correction factor of Farooqi and Richardson and the pipe inclination angle, was proposed to predict the average void fraction of gas/non-Newtonian power-law stratified flow in downward inclined pipes. The correlation was based on 470 data points covering a wide range of flow rates for different systems at diverse angles. A good agreement was obtained between theory and data and the fitting results could describe the majority of the experimental data within ±20%.
Resumo:
The rimming ?ow of a power-law ?uid in the inner surface of a horizontal rotating cylinder is investigated. Exploiting the fact that the liquid layer is thin, the simplest lubrication theory is applied. The generalized run-off condition for the steady-state ?ow of the power-law liquid is derived. In the bounds implied by this condition, ?lm thickness admits a continuous solution. In the supercritical case when the mass of non-Newtonian liquid exceeds a certain value or the speed of rotation is less than an indicated limit, a discontinuous solution is possible and a hydraulic jump may occur in the steady-state regime. The location and height of the hydraulic jump for the power-law liquid is determined.
Resumo:
In the region of self-organized criticality (SOC) interdependency between multi-agent system components exists and slight changes in near-neighbor interactions can break the balance of equally poised options leading to transitions in system order. In this region, frequency of events of differing magnitudes exhibits a power law distribution. The aim of this paper was to investigate whether a power law distribution characterized attacker-defender interactions in team sports. For this purpose we observed attacker and defender in a dyadic sub-phase of rugby union near the try line. Videogrammetry was used to capture players’ motion over time as player locations were digitized. Power laws were calculated for the rate of change of players’ relative position. Data revealed that three emergent patterns from dyadic system interactions (i.e., try; unsuccessful tackle; effective tackle) displayed a power law distribution. Results suggested that pattern forming dynamics dyads in rugby union exhibited SOC. It was concluded that rugby union dyads evolve in SOC regions suggesting that players’ decisions and actions are governed by local interactions rules.
Resumo:
Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n) (n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko’s Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi term time-space fractional models including fractional Laplacian.