919 resultados para power-law distributions
Resumo:
In the region of self-organized criticality (SOC) interdependency between multi-agent system components exists and slight changes in near-neighbor interactions can break the balance of equally poised options leading to transitions in system order. In this region, frequency of events of differing magnitudes exhibits a power law distribution. The aim of this paper was to investigate whether a power law distribution characterized attacker-defender interactions in team sports. For this purpose we observed attacker and defender in a dyadic sub-phase of rugby union near the try line. Videogrammetry was used to capture players’ motion over time as player locations were digitized. Power laws were calculated for the rate of change of players’ relative position. Data revealed that three emergent patterns from dyadic system interactions (i.e., try; unsuccessful tackle; effective tackle) displayed a power law distribution. Results suggested that pattern forming dynamics dyads in rugby union exhibited SOC. It was concluded that rugby union dyads evolve in SOC regions suggesting that players’ decisions and actions are governed by local interactions rules.
Resumo:
A long-held assumption in entrepreneurship research is that normal (i.e., Gaussian) distributions characterize variables of interest for both theory and practice. We challenge this assumption by examining more than 12,000 nascent, young, and hyper-growth firms. Results reveal that variables which play central roles in resource-, cognition-, action-, and environment-based entrepreneurship theories exhibit highly skewed power law distributions, where a few outliers account for a disproportionate amount of the distribution's total output. Our results call for the development of new theory to explain and predict the mechanisms that generate these distributions and the outliers therein. We offer a research agenda, including a description of non-traditional methodological approaches, to answer this call.
Resumo:
Power laws, also known as Pareto-like laws or Zipf-like laws, are commonly used to explain a variety of real world distinct phenomena, often described merely by the produced signals. In this paper, we study twelve cases, namely worldwide technological accidents, the annual revenue of America׳s largest private companies, the number of inhabitants in America׳s largest cities, the magnitude of earthquakes with minimum moment magnitude equal to 4, the total burned area in forest fires occurred in Portugal, the net worth of the richer people in America, the frequency of occurrence of words in the novel Ulysses, by James Joyce, the total number of deaths in worldwide terrorist attacks, the number of linking root domains of the top internet domains, the number of linking root domains of the top internet pages, the total number of human victims of tornadoes occurred in the U.S., and the number of inhabitants in the 60 most populated countries. The results demonstrate the emergence of statistical characteristics, very close to a power law behavior. Furthermore, the parametric characterization reveals complex relationships present at higher level of description.
Resumo:
BACKGROUND: Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. OBJECTIVES: The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. METHODS: Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. RESULTS: All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R(2) values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, P<.001). CONCLUSIONS: This is the first study to investigate power distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns can be replicated in networks that are managed by other organizations, and we conjecture that patterns observed in this study could be found in other DHSNs. Future research should analyze network growth over time and examine the characteristics and survival rates of superusers.
Resumo:
The number of citations of a scientific publication or of an individual scientist has become an important factor of quality assessment in science. We report a study of the statistical distribution of the citation index of both scientific publications and scientists. We give numerical evidence that Tsallis (power law) statistics explains the entire distribution over eight orders of magnitude (10-4 to 10(4)). Also, we draw Zipf plots in order to analyze the statistical distribution of the citation index of Brazilian and international physicists and chemists. The relatively small group of Brazilian scientists seems more adequate to explain the dynamics of the citation index. In this case, we find that the distribution of the citation index can also be explained by a gradually truncated power law with similar parameters. We finally discuss possible mechanisms behind the citation index of scientists and scientific publications.
Resumo:
Power-law distributions have been observed in various economical and physical systems. Levy flights have infinite variance which discourage a physical approach. We introduce a class of stochastic processes, the gradually truncated Levy flight in which large steps of a Levy flight are gradually eliminated. It has finite variance and the system can be analyzed in a closed form. We applied the present method to explain the distribution of a particular economical index. The present method can be applied to describe time series in a variety of fields, i.e. turbulent flow, anomalous diffusion, polymers, etc. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Isotope yield distributions in the multifragmentation regime were studied with high-quality isotope identification, focusing on the intermediate mass fragments (IMFs) produced in semiviolent collisions. The yields were analyzed within the framework of a modified Fisher model. Using the ratio of the mass-dependent symmetry energy coefficient relative to the temperature, a(sym)/T, extracted in previous work and that of the pairing term, a(p)/T, extracted from this work, and assuming that both reflect secondary decay processes, the experimentally observed isotope yields were corrected for these effects. For a given I = N - Z value, the corrected yields of isotopes relative to the yield of C-12 show a power law distribution Y (N, Z)/Y(C-12) similar to A(-tau) in the mass range 1 <= A <= 30, and the distributions are almost identical for the different reactions studied. The observed power law distributions change systematically when I of the isotopes changes and the extracted tau value decreases from 3.9 to 1.0 as I increases from -1 to 3. These observations are well reproduced by a simple deexcitation model, with which the power law distribution of the primary isotopes is determined to be tau(prim) = 2.4 +/- 0.2, suggesting that the disassembling system at the time of the fragment formation is indeed at, or very near, the critical point.
Resumo:
We studied the statistical distribution of student's performance, which is measured through their marks, in university entrance examination (Vestibular) of UNESP (Universidade Estadual Paulista) with respect to (i) period of study - day versus night period (ii) teaching conditions - private versus public school (iii) economical conditions - high versus low family income. We observed long ubiquitous power law tails in physical and biological sciences in all cases. The mean value increases with better study conditions followed by better teaching and economical conditions. In humanities, the distribution is close to normal distribution with very small tail. This indicates that these power law tails in science subjects axe due to the nature of the subjects themselves. Further and better study, teaching and economical conditions axe more important for physical and biological sciences in comparison to humanities at this level of study. We explain these statistical distributions through Gradually Truncated Power law distributions. We discuss the possible reason for this peculiar behavior.
Resumo:
We studied the statistical distribution of candidate's performance which is measured through their marks in university entrance examination (Vestibular) of UNESP (Universidade Estadual Paulista) for years 1998, 1999, and 2000. All students are divided in three groups: Physical, Biological and Humanities. We paid special attention to the examination of Portuguese language which is common for all and examinations for the particular area. We observed long ubiquitous power law tails in Physical and Biological sciences. This indicate the presence of strong positive feedback in sciences. We are able to explain completely these statistical distributions through Gradually Truncated Power law distributions which we developed recently to explain statistical behavior of financial market. The statistical distribution in case of Portuguese language and humanities is close to normal distribution. We discuss the possible reason for this peculiar behavior.
Resumo:
We derive the species-area relationship (SAR) expected from an assemblage of fractally distributed species. If species have truly fractal spatial distributions with different fractal dimensions, we show that the expected SAR is not the classical power-law function, as suggested recently in the literature. This analytically derived SAR has a distinctive shape that is not commonly observed in nature: upward-accelerating richness with increasing area (when plotted on log-log axes). This suggests that, in reality, most species depart from true fractal spatial structure. We demonstrate the fitting of a fractal SAR using two plant assemblages (Alaskan trees and British grasses). We show that in both cases, when modelled as fractal patterns, the modelled SAR departs from the observed SAR in the same way, in accord with the theory developed here. The challenge is to identify how species depart from fractality, either individually or within assemblages, and more importantly to suggest reasons why species distributions are not self-similar and what, if anything, this can tell us about the spatial processes involved in their generation.
Resumo:
The objective was to test the hypothesis that the size frequency distributions of the prion protein (PrP) plaques in cases of variant Creutzfeldt-Jakob disease (vCJD) follow a power-law function. The design was a retrospective neuropathological study. The patients were 11 cases of clinically and neuropathologically verified vCJD. Size distributions of the diffuse and florid-type plaques were measured in several areas of the cerebral cortex and hippocampus from each case and a power-law function fitted to each distribution. The size distributions of the florid and diffuse plaques were fitted successfully by a powerlaw function in 100% and 42% of brain areas investigated respectively. Processes of aggregation/disaggregation may be more important than surface diffusion in the pathogenesis of the florid plaques. By contrast, surface diffusion may be a more significant factor in the development of the diffuse plaques. © Springer-Verlag Italia 2006.
Resumo:
Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.
Resumo:
Catastrophic events, such as wars and terrorist attacks, tornadoes and hurricanes, earthquakes, tsunamis, floods and landslides, are always accompanied by a large number of casualties. The size distribution of these casualties has separately been shown to follow approximate power law (PL) distributions. In this paper, we analyze the statistical distributions of the number of victims of catastrophic phenomena, in particular, terrorism, and find double PL behavior. This means that the data sets are better approximated by two PLs instead of a single one. We plot the PL parameters, corresponding to several events, and observe an interesting pattern in the charts, where the lines that connect each pair of points defining the double PLs are almost parallel to each other. A complementary data analysis is performed by means of the computation of the entropy. The results reveal relationships hidden in the data that may trigger a future comprehensive explanation of this type of phenomena.
Resumo:
Advances in technology have produced more and more intricate industrial systems, such as nuclear power plants, chemical centers and petroleum platforms. Such complex plants exhibit multiple interactions among smaller units and human operators, rising potentially disastrous failure, which can propagate across subsystem boundaries. This paper analyzes industrial accident data-series in the perspective of statistical physics and dynamical systems. Global data is collected from the Emergency Events Database (EM-DAT) during the time period from year 1903 up to 2012. The statistical distributions of the number of fatalities caused by industrial accidents reveal Power Law (PL) behavior. We analyze the evolution of the PL parameters over time and observe a remarkable increment in the PL exponent during the last years. PL behavior allows prediction by extrapolation over a wide range of scales. In a complementary line of thought, we compare the data using appropriate indices and use different visualization techniques to correlate and to extract relationships among industrial accident events. This study contributes to better understand the complexity of modern industrial accidents and their ruling principles.
Resumo:
The problem of bubble contraction in a Hele-Shaw cell is studied for the case in which the surrounding fluid is of power-law type. A small perturbation of the radially symmetric problem is first considered, focussing on the behaviour just before the bubble vanishes, it being found that for shear-thinning fluids the radially symmetric solution is stable, while for shear-thickening fluids the aspect ratio of the bubble boundary increases. The borderline (Newtonian) case considered previously is neutrally stable, the bubble boundary becoming elliptic in shape with the eccentricity of the ellipse depending on the initial data. Further light is shed on the bubble contraction problem by considering a long thin Hele-Shaw cell: for early times the leading-order behaviour is one-dimensional in this limit; however, as the bubble contracts its evolution is ultimately determined by the solution of a Wiener-Hopf problem, the transition between the long-thin limit and the extinction limit in which the bubble vanishes being described by what is in effect a similarity solution of the second kind. This same solution describes the generic (slit-like) extinction behaviour for shear-thickening fluids, the interface profiles that generalise the ellipses that characterise the Newtonian case being constructed by the Wiener-Hopf calculation.