902 resultados para power system oscillation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global increase in the penetration of renewable energy is pushing electrical power systems into uncharted territory, especially in terms of transient and dynamic stability. In particular, the greater penetration of wind generation in European power networks is, at times, displacing a significant capacity of conventional synchronous generation with fixed-speed induction generation and now more commonly, doubly-fed induction generators. The impact of such changes in the generation mix requires careful monitoring to assess the impact on transient and dynamic stability. This paper presents a measurement based method for the early detection of power system oscillations, with attention to mode damping, in order to raise alarms and develop strategies to actively improve power system dynamic stability and security. A method is developed based on wavelet transform and support vector data description (SVDD) to detect oscillation modes in wind farm output power, which may excite dynamic instabilities in the wider system. The wavelet transform is used as a filter to identify oscillations in different frequency bands, while SVDD is used to extract dominant features from different scales and generate an assessment boundary according to the extracted features. Poorly damped oscillations of a large magnitude or that are resonant can be alarmed to the system operator, to reduce the risk of system instability. Method evaluation is exemplified used real data from a chosen wind farm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two case studies are presented in this paper to demonstrate the impact of different power system operation conditions on the power oscillation frequency modes in the Irish power system. A simplified 2 area equivalent of the Irish power system has been used in this paper, where area 1 represents the Republic of Ireland power system and area 2 represents the Northern Ireland power system.

The potential power oscillation frequency modes on the interconnector during different operation conditions have been analysed in this paper. The main objective of this paper is to analyse the influence of different operation conditions involving wind turbine generator (WTG) penetration on power oscillation frequency modes using phasor measurement unit (PMU) data.

Fast Fourier transform (FFT) analysis was performed to identify the frequency oscillation mode while correlation coefficient analysis was used to determine the source of the frequency oscillation. The results show that WTG, particularly fixed speed induction generation (FSIG), gives significant contribution to inter-area power oscillation frequency modes during high WTG operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the use of plug-in parking lots (SmartPark) as integral energy storage to improve small-signal stability using plug-in electric vehicles (PEV). The paper establishes the Phillips-Heffron model of a power system for a SmartPark solution. Based on this model, SmartPark-based stabilisers have been designed based using phase compensation to improve power system oscillation stability. The effectiveness of stabilisation superimposed on the active and reactive power regulators is verified by simulations obtained from a multi-machine power system model with SmartPark and a large-scale wind farm inclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UK wind-power capacity is increasing and new transmission links are proposed with Norway, where hydropower dominates the electricity mix. Weather affects both these renewable resources and the demand for electricity. The dominant large-scale pattern of Euro-Atlantic atmospheric variability is the North Atlantic Oscillation (NAO), associated with positive correlations in wind, temperature and precipitation over northern Europe. The NAO's effect on wind-power and demand in the UK and Norway is examined, focussing on March when Norwegian hydropower reserves are low and the combined power system might be most susceptible to atmospheric variations. The NCEP/NCAR meteorological reanalysis dataset (1948–2010) is used to drive simple models for demand and wind-power, and ‘demand-net-wind’ (DNW) is estimated for positive, neutral and negative NAO states. Cold, calm conditions in NAO− cause increased demand and decreased wind-power compared to other NAO states. Under a 2020 wind-power capacity scenario, the increase in DNW in NAO− relative to NAO neutral is equivalent to nearly 25% of the present-day average rate of March Norwegian hydropower usage. As the NAO varies on long timescales (months to decades), and there is potentially some skill in monthly predictions, we argue that it is important to understand its impact on European power systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of differential geometry to study the dynamics of electrical machines by Gabriel Kron evoked only theoretical interest among the power system engineers and was considered hardly suitable for any practical use. Extension of Kron's work led to a physical understanding of the processes governing the small oscillation instability in power system. This in turn has made it possible to design a self-tuning Power System Stabilizer to contain the oscillatory instability over arm extended range of system and operating conditions. This paper briefly recounts the history of this development and touches upon the essential design features of the stabilizer. It presents some results from simulation studies, laboratory experiments and recently conducted field trials at actual plants-all of which help to establish the efficacy of the proposed stabilizer and corroborate the theoretical findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global increase in the penetration of renewable energy is pushing electrical power systems into uncharted territory, especially in terms of transient and dynamic stability. In particular, the greater penetration of wind generation in European power networks is, at times, displacing a significant capacity of conventional synchronous generation with fixed-speed induction generation and now more commonly, doubly fed induction generators. The impact of such changes in the generation mix requires careful monitoring to assess the impact on transient and dynamic stability. This study presents a measurement-based method for the early detection of power system oscillations, with consideration of mode damping, in order to raise alarms and develop strategies to actively improve power system dynamic stability and security. A method is developed based on wavelet-based support vector data description (SVDD) to detect oscillation modes in wind farm output power, which may excite dynamic instabilities in the wider system. The wavelet transform is used as a filter to identify oscillations in frequency bands, whereas the SVDD method is used to extract dominant features from different scales and generate an assessment boundary according to the extracted features. Poorly damped oscillations of a large magnitude, or that are resonant, can be alarmed to the system operator, to reduce the risk of system instability. The proposed method is exemplified using measured data from a chosen wind farm site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a case-study of a PMU application with PSS support in a real large scale Chinese power system to suppress inter-area oscillations. The paper uses PMU measured feedback signals from a PSS input signal for dynamic torque analysis (DTA). In the paper, a mathematical model of multi-machine power system is described, followed by formation of the residue and DTA indices. Simulations of the model are used with a large-scale power system model to demonstrate the role of PSS and the equivalence of DTA residue indices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of power fluctuations arising from fixed-speed wind turbines on the magnitude and frequency of inter-area oscillations has been investigated. The authors introduced data acquisition equipment to record the power flow on the interconnector between the Northern Ireland and Republic of Ireland systems. Through monitoring the interconnector oscillation using a fast Fourier transform, it was possible to determine the magnitude and frequency of the inter-area oscillation between the two systems. The impact of tower shadow on the output power from a wind farm was analysed using data recorded on site. A case study investigates the effect on the system of the removal of a large fixed-speed wind farm. Conclusions are drawn on the impact that conventional generation and the output from fixed-speed wind farms have on the stability of the Irish power system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small signal stability of interconnected power systems is one of the important aspects that need to be investigated since the oscillations caused by this kind of instability have caused many incidents. With the increasing penetration of wind power in the power system, particularly doubly fed induction generator (DFIG), the impact on the power system small signal stability performance should be fully investigated. Because the DFIG wind turbine integration is through a fast action converter and associated control, it does not inherently participate in the electromechanical small signal oscillation. However, it influences the small signal stability by impacting active power flow paths in the network and replacing synchronous generators that have power system stabilizer (PSS). In this paper, the IEEE 39 bus test system has been used in the analysis. Furthermore, four study cases and several operation scenarios have been conducted and analysed. The selective eigenvalue Arnoldi/lanczos's method is used to obtain the system eigenvalue in the range of frequency from 0.2 Hz to 2 Hz which is related to electromechanical oscillations. Results show that the integration of DFIG wind turbines in a system during several study cases and operation scenarios give different influence on small signal stability performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the application of the Decentralized Modal Control method for pole placement in multimachine power systems utilizing FACTS (Flexible AC Transmission Systems), STATCOM (Static Synchronous Compensator) and UPFC (Unified Power Flow Controller) devices. For this, these devices are equipped with supplementary damping controllers, denominated POD ( Power Oscillation Damping), achieving a coordinated project with local controllers (Power System Stabilizers - PSS). Comparative analysis on the function of damping of the FACTS, STATCOM and UPFC is performed using the New England System that has 10 generators, 39 buses and 46 transmission lines. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents small-signal stability studies of a multimachine power system, considering Static Synchronous Compensators (STATCOM)and discussed control modes of the STATCOM. The Power Sensitivity Model(PSM)is used to represent the electric power system. The study is based on modal analysis and time domain simulations. The results obtained allow concluding that the STATCOM improves the stabilization in the electric power system. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a computational tool to assist power system engineers in the field tuning of power system stabilizers (PSSs) and Automatic Voltage Regulators (AVRs). The outcome of this tool is a range of gain values for theses controllers within which there is a theoretical guarantee of stability for the closed-loop system. This range is given as a set of limit values for the static gains of the controllers of interest, in such a way that the engineer responsible for the field tuning of PSSs and/or AVRs can be confident with respect to system stability when adjusting the corresponding static gains within this range. This feature of the proposed tool is highly desirable from a practical viewpoint, since the PSS and AVR commissioning stage always involve some readjustment of the controller gains to account for the differences between the nominal model and the actual behavior of the system. By capturing these differences as uncertainties in the model, this computational tool is able to guarantee stability for the whole uncertain model using an approach based on linear matrix inequalities. It is also important to remark that the tool proposed in this paper can also be applied to other types of parameters of either PSSs or Power Oscillation Dampers, as well as other types of controllers (such as speed governors, for example). To show its effectiveness, applications of the proposed tool to two benchmarks for small signal stability studies are presented at the end of this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new control algorithm using parallel braking resistor (BR) and serial fault current limiter (FCL) for power system transient stability enhancement is presented in this paper. The proposed control algorithm can prevent transient instability during first swing by immediately taking away the transient energy gained in faulted period. It can also reduce generator oscillation time and efficiently make system back to the post-fault equilibrium. The algorithm is based on a new system energy function based method to choose optimal switching point. The parallel BR and serial FCL resistor can be switched at the calculated optimal point to get the best control result. This method allows optimum dissipation of the transient energy caused by disturbance so to make system back to equilibrium in minimum time. Case studies are given to verify the efficiency and effectiveness of this new control algorithm.