949 resultados para power balance
Resumo:
This article reports results of an experiment designed to analyze the link between risky decisions made by couples and risky decisions made separately by each spouse. We estimate both the spouses and the couples' degrees of risk aversion, we assess how the risk preferences of the two spouses aggregate when they make risky decisions, and we shed light on the dynamics of the decision process that takes place when couples make risky decisions. We find that, far from being fixed, the balance of power within the household is malleable. In most couples, men have, initially, more decision-making power than women but women who ultimately implement the joint decisions gain more and more power over the course of decision making.
Modeling of the spectrum in a random distributed feedback fiber laser within the power balance modes
Resumo:
The simplest model for a description of the random distributed feedback (RDFB) Raman fiber laser is a power balance model describing the evolution of the intensities of the waves over the fiber length. The model predicts well the power performances of the RDFB fiber laser including the generation threshold, the output power and pump and generation wave intensity distributions along the fiber. In the present work, we extend the power balance model and modify equations in such a way that they describe now frequency dependent spectral power density instead of integral over the spectrum intensities. We calculate the generation spectrum by using the depleted pump wave longitudinal distribution derived from the conventional power balance model. We found the spectral balance model to be sufficient to account for the spectral narrowing in the RDFB laser above the threshold of the generation. © 2014 SPIE.
Resumo:
This project is funded by European Research Council in FP7; grant no 259328, 2010 and EPSRC grant no EP/K006428/1, 2013.
Resumo:
This project is funded by European Research Council in FP7; grant no 259328, 2010 and EPSRC grant no EP/K006428/1, 2013.
Resumo:
A novel intelligent online demand side management system is proposed for peak load management. The method also regulates the network voltage, balances the power in three phases and coordinates the battery storage discharge within the network. This method uses low cost controllers with low bandwidth two-way communication installed in costumers' premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified through an event-based developed simulation in Matlab.
Resumo:
The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.
Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.
Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.
Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.
Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.
Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.
Resumo:
This paper proposes a new approach and coding scheme for solving economic dispatch problems (ED) in power systems through an effortless hybrid method (EHM). This novel coding scheme can effectively prevent futile searching and also prevents obtaining infeasible solutions through the application of stochastic search methods, consequently dramatically improves search efficiency and solution quality. The dominant constraint of an economic dispatch problem is power balance. The operational constraints, such as generation limitations, ramp rate limits, prohibited operating zones (POZ), network loss are considered for practical operation. Firstly, in the EHM procedure, the output of generator is obtained with a lambda iteration method and without considering POZ and later in a genetic based algorithm this constraint is satisfied. To demonstrate its efficiency, feasibility and fastness, the EHM algorithm was applied to solve constrained ED problems of power systems with 6 and 15 units. The simulation results obtained from the EHM were compared to those achieved from previous literature in terms of solution quality and computational efficiency. Results reveal that the superiority of this method in both aspects of financial and CPU time. (C) 2011 Elsevier Ltd. All rights reserved.
Singular value analyses of voltage stability on power system considering wind generation variability
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
El equilibrio es una habilidad compleja esencial para la realización de cualquier tarea motriz y para la prevención de lesiones y caídas. La aparición de las pulseras holográficas, con supuestos beneficios entre los cuales se incluye la mejora del equilibrio, recibió la atención del público y los medios de comunicación por igual. Sin embargo, no hay evidencia científica de que los hologramas mejoren cualquier atributo físico. El objetivo de este estudio fue evaluar el efecto de las pulseras holográficas Power Balance® en el equilibrio. Siguiendo un método triple ciego, 25 estudiantes sanos y físicamente activos universitarios (14 mujeres, 11 hombres) fueron sometidos a la prueba de organización sensorial (SOT) en dos días separados mientras llevaban una pulsera con o sin hologramas (los ensayos se realizaron al azar en un orden contrabalanceado). El SOT proporciona detalles sobre el equilibrio total y la contribución relativa de los tres sistemas sensoriales principales (somatosensoriales, visuales y vestibulares) que intervienen en el equilibrio. Los resultados para el grupo como un todo revelaron que el uso de una pulsera holográfica no tiene ningún efecto significativo en cualquiera de estas variables. Sin embargo, cuando se analizaron los resultados de las mujeres de forma aislada, el uso de las pulseras holográficas se asoció con diferencias significativas en las puntuaciones de dos variables SOT: Equilibrio compuesto (86.5±3.7 con la pulsera holográfica en comparación con 85.5±4.5 sin ella; p?0.05) y la media general (93.5±2.0 en comparación con 92.8±2.4; p?0.05). Sin embargo, aunque a nivel estadístico estas diferencias fueron encontradas, la magnitud era tan pequeña que el equilibrio no se podría haber mejorado en ningún sentido práctico. En conclusión, las pulseras holográficas Power Balance® no ejercen ningún efecto significativo en el equilibrio en adultos jóvenes sanos.
Resumo:
This paper focuses on the move from buyer dominance toward interdependence between buyers and suppliers in a distribution channel. The paper introduces a case study collected through in-depth interviews and participative observations. It examines the relationships between a timber supplier and its customers in the builders' merchants sector. We stress the relevance of considering actions intended to change the power balance, rather than focusing only on trust. The power balance in a dyadic relationship is dynamic, and power positions need to be constantly re-evaluated. An important power resource is information asymmetry, manifested in the supplier's information about: products, regional and local demand, and the usage of the products. For practitioners, we highlight the possibility of exerting a non-coercive power resource, such as information asymmetry, in order to increase the relative power. Furthermore, being open about the power position between a buyer and a seller can foster a more efficient collaboration.
Resumo:
In this paper, the optimal allocation and sizing of distributed generators (DGs) in a distribution system is studied. To achieve this goal, an optimization problem should be solved in which the main objective is to minimize the DGs cost and to maximise the reliability simultaneously. The active power balance between loads and DGs during the isolation time is used as a constraint. Another point considered in this process is the load shedding. It means that if the summation of DGs active power in a zone, isolated by the sectionalizers because of a fault, is less than the total active power of loads located in that zone, the program start shedding the loads in one-by-one using the priority rule still the active power balance is satisfied. This assumption decreases the reliability index, SAIDI, compared with the case loads in a zone are shed when total DGs power is less than the total load power. To validate the proposed method, a 17-bus distribution system is employed and the results are analysed.
Resumo:
When the supply voltages are balanced and sinusoidal, load compensation can give both unity power factor (UPF) and perfect harmonic cancellation (PHC) source currents. But under distorted supply voltages, achieving both UPF and PHC currents are not possible and contradictory to each other. Hence there should be an optimal performance between these two important compensation goals. This paper presents an optimal control algorithm for load compensation under unbalanced and distorted supply voltages. In this algorithm source currents are compensated for reactive, imbalance components and harmonic distortions set by the limits. By satisfying the harmonic distortion limits and power balance, this algorithm gives the source currents which will provide the maximum achievable power factor. The detailed simulation results using MATLAB are presented to support the performance of the proposed optimal control algorithm.
Resumo:
A global electromagnetic model of an inductively coupled plasma sustained by an internal oscillating current sheet in a cylindrical metal vessel is developed. The electromagnetic field structure, profiles of the rf power transferred to the plasma electrons, electron/ion number density, and working points of the discharge are studied, by invoking particle and power balance. It is revealed that the internal rf current with spatially invariable phase significantly improves the radial uniformity of the electromagnetic fields and the power density in the chamber as compared with conventional plasma sources with external flat spiral inductive coils. This configuration offers the possibility of controlling the rf power deposition in the azimuthal direction.
Resumo:
The transition between the two stable operation regimes (E and H discharge modes) in inductively coupled argon plasmas has been studied experimentally and theoretically. Analogy with other physical phenomena exhibiting hysteresis has been drawn. Analysis of power balance, electromagnetic field, plasma parameters, densities of the excited states, and optical emission spectra shows that the hysteresis may be due to nonlinearities associated with step-wise ionization through excited states of the argon atoms.
Resumo:
A global, or averaged, model for complex low-pressure argon discharge plasmas containing dust grains is presented. The model consists of particle and power balance equations taking into account power loss on the dust grains and the discharge wall. The electron energy distribution is determined by a Boltzmann equation. The effects of the dust and the external conditions, such as the input power and neutral gas pressure, on the electron energy distribution, the electron temperature, the electron and ion number densities, and the dust charge are investigated. It is found that the dust subsystem can strongly affect the stationary state of the discharge by dynamically modifying the electron energy distribution, the electron temperature, the creation and loss of the plasma particles, as well as the power deposition. In particular, the power loss to the dust grains can take up a significant portion of the input power, often even exceeding the loss to the wall.