956 resultados para potassium nitrate
Resumo:
Alternaria leaf blight is the most prevalent disease of cotton in northern Australia. A trial was conducted at Katherine Research Station, Northern Territory, Australia, to determine the effects of foliar application of potassium nitrate (KNO3) on the suppression of Alternaria leaf blight of cotton. Disease incidence, severity and leaf shedding were assessed at the bottom (1-7 nodes), middle (8-14 nodes) and the top (15+ nodes) of plants at weekly intervals from 7 July to 22 September 2004. Disease incidence, severity and shedding at the middle canopy level were significantly higher for all treatments than those from bottom and top canopies. Foliar KNO3, applied at 13 kg/ha, significantly (P < 0.05) reduced the mean disease incidence, severity and leaf shedding assessed during the trial period. KNO 3 significantly (P < 0.001) reduced the disease severity and leaf shedding at the middle canopy level. Almost all leaves in the middle canopy became infected in the first week of July in contrast to infection levels of 50-65% at the bottom and top of the canopy. Disease severity and leaf shedding in the middle canopy were significantly (P < 0.05) lower in KNO 3-treated plots than the control plots from the second and third weeks of July to the second and third weeks of August. This study demonstrates that foliar application of KNO3 may be effective in reducing the effect of Alternaria leaf blight of cotton in northern Australia.
Resumo:
The effects of plant regulators and potassium nitrate were studied on 'Rangpur' lime (Citrus limonia Osbeck) seeds germination. The seeds were removed from ripe fruits, washed, dried and stored at 4 - 5 degrees C, and treated for 24 hours before sowing and the treatments were: KNO3 0,1% and 0,2%; GA(3) 50 ppm, 100 ppm and 250 ppm; GA(4+7)+phenylmethylaminepurine 100 ppm; phenylmethylaminepurine 20 ppm and control. The germination was evaluated begining 13 days after sowing. Best results were obtained with KNO3 0,2%, which proved most beneficial in enhancing percentage and germination rate.
Resumo:
Urea has been considered as a promising alternative nitrogen source for the cultivation of Arthrospira platensis if it is possible to avoid ammonia toxicity; however, this procedure can lead to periods of nitrogen shortage. This study shows that the addition of potassium nitrate, which acts as a nitrogen reservoir, to cultivations carried out with urea in a fed-batch process can increase the maximum cell concentration (Xm) and also cell productivity (PX). Using response surface methodology, the model indicates that the estimated optimum Xm can be achieved with 17.3 mM potassium nitrate and 8.9 mM urea. Under this condition an Xm of 6077 +/- 199 mg/L and a PX of 341.5 +/- 19.1 mg L1day1 were obtained.
Resumo:
"July 1934."
Resumo:
The text is divided into three parts; Properties, Application and Safety of Ammonium Nitrate (AN) based fertilisers. In Properties, the structures and phase transitions of ammonium and potassium nitrate are reviewed. The consequences of phase transitions affect the proper use of fertilisers. Therefore the products must be stabilised against the volume changes and consequent loss of bulk density and hardness, formation of dust and finally caking of fertilisers. The effect of different stabilisers is discussed. Magnesium nitrate, ammonium sulphate and potassium nitrate are presented as a good compromise. In the Application part, the solid solutions in the systems (K+,NH4+)NO3- and (NH4+,K+)(Cl-,NO3-) are presented based on studies made with DSC and XRD. As there are clear limits for solute content in the solvent lattice, a number of disproportionation transitions exist in these process phases, e.g., N3 (solid solution isomorphous to NH4NO3-III) disproportionates to phases K3 (solid solution isomorphous to KNO3-III) and K2 (solid solution isomorphous to KNO3-II). In the crystallisation experiments, the formation of K3 depends upon temperature and the ratio K/(K+NH4). The formation of phases K3, N3, and K2 was modelled as a function of temperature and the mole ratios. In introducing chlorides, two distinct maxima for K3 were found. Confirmed with commercial potash samples, the variables affecting the reaction of potassium chloride with AN are the particle size, time, temperature, moisture content and amount of organic coating. The phase diagrams obtained by crystallisation studies were compared with a number of commercial fertilisers and, with regard to phase composition, the temperature and moisture content are critical when the formation and stability of solid solutions are considered. The temperature where the AN-based fertiliser is solidified affects the amount of compounds crystallised at that point. In addition, the temperature where the final moisture is evaporated affects the amount and type of solid solution formed at this temperature. The amount of remaining moisture affects the stability of the K3 phase. The K3 phase is dissolved by the moisture and recrystallised into the quantities of K3, which is stable at the temperature where the sample is kept. The remaining moisture should not be free; it should be bound as water in the final product. The temperatures during storage also affect the quantity of K3 phase. As presented in the figures, K3 phase is not stable at temperatu¬res below 30 °C. If the temperature is about 40 °C, the K3 phase can be formed due to the remaining moisture. In the Safety part, self-sustaining decomposition (SSD), oxidising and energetic properties of fertilisers are discussed. Based on the consequence analysis of SSD, early detection of decomposition in warehouses and proper temperature control in the manufacturing process is important. SSD and oxidising properties were found in compositions where K3 exists. It is assumed that potassium nitrate forms a solid matrix in which AN can decompose. The oxidising properties can be affected by the form of the product. Granular products are inherently less oxidising. Finally energetic properties are reviewed. The composition of the fertiliser has an importance based on theoretical calculations supported by experimental studies. Materials such as carbonates and sulphates act as diluents. An excess of ammonium ions acts as a fuel although this is debatable. Based on the experimental work, the physical properties have a major importance over the composition. A high bulk density is of key importance for detonation resistance.
Resumo:
The electrochemical oxidation of 1-butyl-3-methylimidazolium nitrate [C(4)mim][NO3] was studied by cyclic voltammetry in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [C(2)mim][NTf2]. A sharp peak was observed on a Pt microelectrode (d = 10 mu m), and a diffusion coefficient at infinite dilution of ca. 2.0 x 10(-11) m(2) s(-1) was obtained. Next, the cyclic voltammetry of sodium nitrate (NaNO3) and potassium nitrate (KNO3) was studied, by dissolving small amounts of solid into the RTIL [ C2mim][ NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 8.8 and 9.0 x 10(-12) m(2) s(-1) and solubilities of 11.9 and 10.8 mM for NaNO3 and KNO3, respectively. The smaller diffusion coefficients for NaNO3 and KNO3 (compared to [C(4)mim][NO3]) may indicate that NO3- is ion-paired with Na+ or K+. This work may have applications in the electroanalytical determination of nitrate in RTIL solutions. Furthermore, a reduction feature was observed for both NaNO3 and KNO3, with additional anodic peaks indicating the formation of oxides, peroxides, superoxides and nitrites. This behaviour is surprisingly similar to that obtained from melts of NaNO3 and KNO3 at high temperatures ( ca. 350 - 500 degrees C), and this observation could significantly simplify experimental conditions required to investigate these compounds. We then used X-ray photoelectron spectroscopy (XPS) to suggest that disodium( I) oxide (Na2O), which has found use as a storage compound for hydrogen, was deposited on a Pt electrode surface following the reduction of NaNO3.
Resumo:
Hungry cattle and sheep introduced to stockyards containing a dominant or pure growth of Dactyloctenium radulans (button grass) suffered acute nitrate-nitrite toxicity in four incidents in inland Queensland between 1993 and 2001. Deaths ranged from 16 to 44%. Methaemoglobinaemia was noted at necropsies in all incidents. An aqueous humour sample from one dead steer contained 75 mg nitrate/L and from one dead sheep contained 100 mg nitrate and 50 mg nitrite/L (normal = ca 5 mg nitrate/L). Both lush and dry button grass were toxic. The nitrate content of button grass from within the stockyards ranged from 4.0 to 12.9% as potassium nitrate equivalent in dry matter and from outside the stockyards ranged from
Resumo:
Three strains ofMadurella mycetomi, two ofM. grisea, and two ofRhinocladiella mansonii have been studied for ossible differences in growth requirements which might be used for distinguishing these species. Under the experimental conditions, an incubation temperature of 37C suitedM. mycetomi about as well as 30C.R. mansonii grew less well at 37C than at 30C, andM. grisea did not grow at the higher temperature. M. grisea andR. mansonii further differed fromM. mycetomi in that they required thiamine for growth. The pH tolerance of all the strains was very wide. Asparagine and potassium nitrate were readily utilized by all the strains, but ammonium salts were not. Urea was poorly used byM. mycetomi; the other species did not use it. A possible relationship ofM. grisea andR. mansonii is discusse
Resumo:
The specific activity of glutamine synthetase (L-glutamate: ammonia ligase, EC 6.3.1.2) in surface grown Aspergillus niger was increased 3-5 fold when grown on L-glutamate or potassium nitrate, compared to the activity obtained on ammonium chloride. The levels of glutamine synthetase was regulated by the availability of nitrogen source like NH4 + , and further, the enzyme is repressed by increasing concentrations of NH4 +. In contrast to other micro-organisms, the Aspergillus niger enzyme was neither specifically inactivated by NH4+ or L-glutamine nor regulated by covalent modification.Glutamine synthetase from Aspergillus niger was purified to homogenity. The native enzyme is octameric with a molecular weight of 385,000±25,000. The enzyme also catalyses Mn2+ or Mg2+-dependent synthetase and Mn2+-dependent transferase activity.Aspergillus niger glutamine synthetase was completely inactivated by two mol of phenylglyoxal and one mol of N-ethylmaleimide with second order rate constants of 3·8 M–1 min–1 and 760 M–1 min–1 respectively. Ligands like Mg. ATP, Mg. ADP, Mg. AMP, L-glutamate NH4+, Mn2+ protected the enzyme against inactivation. The pattern of inactivation and protection afforded by different ligands against N-ethylamaleimide and phenylglyoxal was remarkably similar. These results suggest that metal ATP complex acts as a substrate and interacts with an arginine ressidue at the active site. Further, the metal ion and the free nucleotide probably interact at other sites on the enzyme affecting the catalytic activity.
Resumo:
A new Er(3+)/Yb(3+) co-doped phosphate glass has been prepared, which exhibits good chemical durability and spectralproperties. Planar graded index waveguides have been fabricated in the glass by (Ag+)-Na(+) ion exchange in a mixed melt of silver nitrate and potassium nitrate. Ion exchange is carried out by varying the process parameters such as temperature, diffusion time, and molten salt compositions. The diffusion parameters, diffusion coefficients, and activation energy are determined by the guidelines of fabricated waveguides, which are determined by the input prism coupling technique.
Resumo:
本研究选用抗盐冬小麦品种—德抗961(DK961)和盐敏感品种—济南17(JN17)为试验材料。一方面,研究了冬小麦对盐分及臭氧胁迫的生理生态响应机制;另一方面,探讨了外源硝酸钾对小麦盐伤害的缓解机理,提出了盐胁迫下小麦优质高产的栽培技术规程。主要结论如下: 1 冬小麦产量与品质对不同浓度盐胁迫的响应 同一小麦品种在不同盐浓度胁迫下产量和品质存在显著差异,不同小麦品种在同一盐分浓度胁迫下产量和品质也有显著差异,说明盐胁迫下小麦产量和品质与小麦品种特性和耐盐性关系密切。在对照栽培条件下,两小麦品种的产量次序为JN17>DK961;在轻度(0.3%)盐胁迫下,耐盐品种仍获得了较高的产量(仅下降5.8%),而盐敏感品种下降幅度较大(为22.9%),此时的产量次序为DK961>JN17;DK961在0.5%盐胁迫下,产量较对照处理下降9.7%,而JN17下降了54.3%;在0.7%盐浓度环境中,DK961和JN17产量均出现了大幅降低,但DK961的产量仍显著高于JN17。 盐胁迫下的小麦品质指标表现为:在0.3%和0.5%盐浓度下,随着盐浓度的升高,蛋白质含量升高,淀粉含量下降;当盐浓度达到0.7%时,两者都快速下降。 2 不同耐盐性冬小麦品种对盐胁迫的生理生态响应 2.1品种与盐浓度对小麦生长特性的影响 盐胁迫造成了小麦的后期衰老加快,光合速率降低,生育期缩短。但这种影响会因小麦的耐盐性不同而有很大的差异:DK961在轻、中度盐浓度(0.3%、0.5%)下,生育期与无盐处理时无显著差异,但当盐浓度达到0.7%时,生育期出现了明显的缩短;相反,JN17生育期在各个盐浓度下都出现了显著变化。对盐敏感品种,盐胁迫导致小麦出苗期、拔节期推迟3-5 d,抽穗期和开花期提前6-7 d,成熟期提前10-15 d。盐胁迫对小麦生育期的影响主要是缩短生殖生长期。 2.2品种与盐浓度对小麦生理代谢的影响 不同冬小麦品种对盐胁迫产生的生理反应程度不同,耐盐小麦品种在一定的盐浓度范围内,盐胁迫症状不明显,生理反应比较迟钝,光合速率、气孔导度、光饱和点等基本维持在无盐处理的水平,丙二醛和活性氧清除酶活性增加不显著;盐敏感品种在各种盐浓度胁迫下或耐盐品种在过重的盐分浓度胁迫下,盐胁迫症状极为显著,小麦植株生长矮小,光合速率、气孔导度、光饱和点等大幅下降,丙二醛和活性氧自由基含量大幅上升,严重的情况下,小麦植株不能正常生长,甚至出现“干死”现象。 3 盐胁迫下冬小麦生理生态特征对臭氧浓度升高的响应 3.1 臭氧污染对小麦生理代谢的影响 3.1.1对小麦叶片气体交换的影响 气孔是小麦叶片与外界气体交换的“大门”,是臭氧进入叶片的主要通道,控制着蒸腾、光合、呼吸等重要生理过程。通常,高浓度臭氧环境中,小麦表现出较低的气孔导度。气孔的这种反应是植物限制臭氧进入叶片中的一种避害机制。 臭氧的强氧化性导致高浓度臭氧环境中小麦的光合速率下降。臭氧通过气孔进入叶片后,对植物叶片光合作用的抑制主要是由Rubiso酶含量/活性的降低引起的。研究发现,臭氧低于某一临界值时,产生的氧化伤害可以被植物体的抗氧化系统清除而不会对光合作用产生抑制,而高于该临界值时由Rubsico限制引起的光合速率降低将与臭氧吸收量呈线性关系。高浓度臭氧环境下,植物光合作用降低的生理原因,主要是臭氧导致叶绿素和可溶性蛋白分解,叶片衰老加快、叶绿体结构发生改变、活性氧清除酶活性升高,而与碳素固定有关的酶活性降低、光合产物向外运输受阻而导致的反馈抑制。 3.1.2对小麦生长特性的影响 研究表明,环境中臭氧浓度升高可引起小麦生长特性发生巨大改变。臭氧污染首先加快老叶的衰老,而对新叶的影响很小。然而老叶衰老能够将其中的营养转移到新生长叶片中,有利于维持植株的生长。臭氧环境下,老叶迅速衰老的同时,同一植株中的新生组织具有较高的Rubisco合成速率和总量,同化速率加强。这一现象被认为是植株在臭氧环境下的一种补偿机制。臭氧显著降低植株同化物向根系的分配,而同化物向根系分配的改变将导致根系与整株植物功能关系的改变。在水分亏缺环境下,植物根系的生长受到抑制,导致根系对土壤营养吸收能力的降低,从而间接降低叶片的光合速率。 3.2 盐胁迫引起的生理响应提高了小麦抵御臭氧伤害的能力 试验结果表明,盐胁迫引起的小麦生理响应(如,气孔导度降低、抗氧化酶活性升高等),显著增强了小麦抵抗臭氧伤害的能力。但这种保护作用是相对的,因为盐胁迫本身已对小麦生长产生显著的抑制作用。 3.2.1 气孔导度下降减少了臭氧的进入 研究发现,臭氧是通过气孔进入植物体内的,而盐胁迫引起的小麦气孔导度下降,显著减少了臭氧进入小麦体内的量,大大减轻了臭氧对小麦的伤害。本实验中,无盐栽培条件下,臭氧引起的小麦光合速率降低,达到了显著水平;而盐胁迫下,由臭氧引起的小麦光合速率降低,未达到显著水平。这说明盐胁迫引起的气孔导度降低,起到了减轻臭氧对小麦生长抑制的作用。 3.2.2 渗透调节能力的增强弱化了臭氧的伤害 盐胁迫引起的可溶性糖、可溶性蛋白、脯氨酸等渗透调节物质含量的升高,大大增强了小麦抵御臭氧伤害的能力。如,臭氧往往造成植物蛋白质的分解,降低蛋白质含量;但盐胁迫下,可溶性蛋白含量是上升的,两方面协调,维持了植株蛋白质水平,促进了小麦生长。另一方面,渗透调节物质的积累,有利于小麦同化物的合成、转化和运输,加快了循环的节奏,这也是盐胁迫降低臭氧对小麦伤害的重要原因之一。 3.2.3 抗氧化能力增强降低了臭氧的氧化伤害 盐胁迫引起的小麦酶促保护系统抗氧化酶(SOD、POD等)活性升高,提高了小麦体内活性氧清除能力。臭氧污染可产生大量的活性氧自由基,对小麦产生强氧化伤害,抑制小麦生长。通常情况下,臭氧胁迫也可引起小麦抗氧化酶活性的提高,来适应这种污染环境。本实验表明,在盐和臭氧的交互作用下,小麦抗氧化酶活性的升高呈现了叠加效应,小麦的活性氧清除能力大大加强,减缓了小麦衰老进程,有利于小麦生长。 4 外源硝酸钾对冬小麦盐胁迫伤害的缓解机理及高产栽培技术规程 4.1 不同浓度硝酸钾处理对盐胁迫下小麦幼苗生理代谢的影响 植株体内K+/Na+比值是衡量小麦抗盐性的一项重要指标。盐胁迫下,小麦体内Na+含量快速上升,而K+含量相对下降,K+/Na+比值快速降低,打破了植株体内离子平衡,对小麦造成Na+“单盐毒害”,严重抑制小麦生长。可溶性糖、脯氨酸等低分子量渗透调节物质含量升高;膜质过氧化程度加重,电解质外渗量及丙二醛含量升高;活性氧自由基增多,抗氧化酶活性升高。 外源KNO3显著提高了小麦植株组织内K+/Na+比值,盐胁迫症状减轻,可溶性糖、脯氨酸等低分子量渗透调节物质含量比单独NaCl胁迫时降低;膜质过氧化程度减轻,电解质外渗量及丙二醛含量降低;活性氧自由基减少,抗氧化酶活性恢复到接近正常水平。但过量施用硝酸钾同样不利于小麦的生长。实验结果表明,小麦生长环境中最佳的K+/Na+ = 16:100。 4.2 抽穗期叶面喷施硝酸钾对盐胁迫下小麦花后生长及籽粒产量的影响 根据小麦生长环境中最佳的钾/钠 = 16:100的实验结果,设计了对100 mM NaCl生长环境中小麦抽穗期叶面喷施10 mM KNO3溶液试验(Hoagland 营养液中已含6 mM KNO3),得出外源硝酸钾有利于盐胁迫下小麦生长的恢复及籽粒产量的提高,DK961和JN17的穗粒数分别比单纯盐胁迫时提高了1.9%和7.1%;千粒重分别提高了2.3%和2.8 %;产量分别提高了4.5%和12.3%;叶面喷施钾肥后,盐胁迫对耐盐小麦产量指标影响变小,小麦各项指标恢复到接近于对照水平。盐敏感小麦品种受到盐胁迫的伤害较重,产量下降幅度较大,施钾肥后小麦盐胁迫症状虽有改善,但仍与对照相差较远。所以,盐胁迫下小麦高产优质栽培中,耐盐品种的选用是首要的。 4.3外源硝酸钾对盐胁迫下花后小麦旗叶气体交换的影响 盐胁迫下小麦叶面喷施钾肥,旗叶光合速率在灌浆期比不施钾处理显著升高,且维持高光合速率时间延长,小麦后期衰老速率减缓。由于施钾处理使旗叶光合速率提高,功能期延长,使籽粒可溶性总糖含量和蔗糖含量高于不施钾的处理,促进了淀粉合成底物的供应,由此促进了淀粉的合成。盐胁迫下小麦抽穗期施钾,可促进小麦旗叶、籽粒的碳、氮代谢,淀粉合成速率加快。同时游离氨基酸含量增加,籽粒中蛋白质合成底物的供应增加,蛋白质产量提高。适宜的钾肥处理能够显著促进小麦植株碳、氮代谢过程,加速碳水化合物和蛋白质的合成,使籽粒蛋白质、淀粉产量提高。 4.4外源硝酸钾对盐胁迫下小麦花后旗叶抗衰老酶活性的影响 盐胁迫可使小麦代谢过程中产生的活性氧自由基增多,刺激酶促防御系统的保护酶(如,SOD、POD、CAT等)活性提高,但当盐浓度超过其上限时,酶活性达到一定的极限,活性氧自由基不能及时的清除,代谢发生紊乱,植株加速衰老或不能正常生长,出现“早死”现象。外源硝酸钾可有效缓解这一抑制作用,提高小麦在盐胁迫下的代谢能力,减少活性氧自由基的产生,减轻活性氧清除系统的压力,能较长时间维持叶片细胞结构的完整性,提高小麦抵抗盐胁迫的能力。 4.5 盐胁迫下小麦优质高产栽培技术规程 研究结果表明:选用高产优质抗盐小麦新品种,并合理配合施用钾肥是获得小麦优质高产的一项有效措施: 1) 选用高产优质抗盐小麦新品种 在品种选用上,首先要考虑苗期耐盐力好、个体分蘖强、成穗率高三大因素,在此基础上选择多穗、粒大、粒多的性状。 2)配合施用钾肥 钾肥基施和抽穗期叶面喷施皆对盐胁迫下小麦生长有促进作用。钾肥的施用量应根据土壤盐浓度而定,小麦生长环境中最佳的K+/Na+比值为16:100。
Resumo:
We have conducted a broad survey of switching behavior in thin films of a range of ferroelectric materials, including some materials that are not typically considered for FeRAM applications, and are hence less studied. The materials studied include: strontium bismuth tantalate (SBT), barium strontium titanate (BST), lead zicronate titanate (PZT), and potassium nitrate (KNO3). Switching in ferroelectric thin films is typically considered to occur by domain nucleation and growth. We discuss two models of frequency dependence of coercive field, the Ishisbashi-Orihara theory where the limiting step is domain growth and the model of Du and Chen where the limiting step is nucleation. While both models fit the data fairly well the temperature dependence of our results on PZT and BST suggest that the nucleation model of Du and Chen is more appropriate for the experimental results that we have obtained.
Resumo:
A family outbreak of methaemoglobinaemia following ingestion of sausages made using 'saltpetre' is reported. Saltpetre is a generic term for several potassium and sodium based compounds. On this occasion imprecise ordering led to the use of sodium nitrite rather than the usual potassium nitrate, with extremely serious consequences.
Resumo:
We investigated seed dormancy and germination in Ficus lundellii Standl. (Moraceae), a native species of Mexico's Los Tuxtlas tropical rain forest. In an 8-h photoperiod at an alternating diurnal (16/8 h) temperature of 20/30 degrees C, germination was essentially complete (96%) within 28 days, whereas in darkness, all seeds remained dormant. Neither potassium nitrate (0.05-0.2%) applied continuously nor gibberellic acid applied either continuously (10-200 ppm) or as a 24 hour pretreatment (2000 ppm) induced germination in the dark. Germination in the light was not reduced by a 24-h hydrochloric acid (0.1-1%) pretreatment, but it was reduced both by a 24-h pretreatment with either H2O2 (0. 1-5 M) or 5% HCl, or by more than 5 days of storage at 40 degrees C (4.5% seed water content). In a study with a 2-dimensional temperature gradient plate, seeds germinated fully and rapidly in the light at a constant temperature of 30 degrees C, and fully but less rapidly in the light at alternating temperatures with low amplitudes (< 12 degrees C) about the optimal constant temperature. The base, optimal and ceiling temperatures for rate of germination were estimated as 13.8, 30.1 and 41.1 degrees C, respectively. In all temperature regimes, light was essential for the germination of F lundellii seeds.