890 resultados para portfolio allocation
Resumo:
Techniques for evaluating and selecting multivariate volatility forecasts are not yet understood as well as their univariate counterparts. This paper considers the ability of different loss functions to discriminate between a set of competing forecasting models which are subsequently applied in a portfolio allocation context. It is found that a likelihood-based loss function outperforms its competitors, including those based on the given portfolio application. This result indicates that considering the particular application of forecasts is not necessarily the most effective basis on which to select models.
Resumo:
The importance of modelling correlation has long been recognised in the field of portfolio management, with largedimensional multivariate problems increasingly becoming the focus of research. This paper provides a straightforward and commonsense approach toward investigating a number of models used to generate forecasts of the correlation matrix for large-dimensional problems.We find evidence in favour of assuming equicorrelation across various portfolio sizes, particularly during times of crisis. During periods of market calm, however, the suitability of the constant conditional correlation model cannot be discounted, especially for large portfolios. A portfolio allocation problem is used to compare forecasting methods. The global minimum variance portfolio and Model Confidence Set are used to compare methods, while portfolio weight stability and relative economic value are also considered.
Resumo:
We propose a new method for estimating the covariance matrix of a multivariate time series of nancial returns. The method is based on estimating sample covariances from overlapping windows of observations which are then appropriately weighted to obtain the nal covariance estimate. We extend the idea of (model) covariance averaging o ered in the covariance shrinkage approach by means of greater ease of use, exibility and robustness in averaging information over different data segments. The suggested approach does not su er from the curse of dimensionality and can be used without problems of either approximation or any demand for numerical optimization.
Resumo:
This paper, examines whether the asset holdings and weights of an international real estate portfolio using exchange rate adjusted returns are essentially the same or radically different from those based on unadjusted returns. The results indicate that the portfolio compositions produced by exchange rate adjusted returns are markedly different from those based on unadjusted returns. However following the introduction of the single currency the differences in portfolio composition are much less pronounced. The findings have a practical consequence for the investor because they suggest that following the introduction of the single currency international investors can concentrate on the real estate fundamentals when making their portfolio choices, rather than worry about the implications of exchange rate risk.
Resumo:
Mestrado em Economia Monetária e Financeira
Resumo:
This paper investigates how best to forecast optimal portfolio weights in the context of a volatility timing strategy. It measures the economic value of a number of methods for forming optimal portfolios on the basis of realized volatility. These include the traditional econometric approach of forming portfolios from forecasts of the covariance matrix, and a novel method, where a time series of optimal portfolio weights are constructed from observed realized volatility and directly forecast. The approach proposed here of directly forecasting portfolio weights shows a great deal of merit. Resulting portfolios are of equivalent economic benefit to a number of competing approaches and are more stable across time. These findings have obvious implications for the manner in which volatility timing is undertaken in a portfolio allocation context.
Resumo:
Since the financial crisis, risk based portfolio allocations have gained a great deal in popularity. This increase in popularity is primarily due to the fact that they make no assumptions as to the expected return of the assets in the portfolio. These portfolios implicitly put risk management at the heart of asset allocation and thus their recent appeal. This paper will serve as a comparison of four well-known risk based portfolio allocation methods; minimum variance, maximum diversification, inverse volatility and equally weighted risk contribution. Empirical backtests will be performed throughout rising interest rate periods from 1953 to 2015. Additionally, I will compare these portfolios to more simple allocation methods, such as equally weighted and a 60/40 asset-allocation mix. This paper will help to answer the question if these portfolios can survive in a rising interest rate environment.
Resumo:
The success of any diversification strategy depends upon the quality of the estimated correlation between assets. It is well known, however, that there is a tendency for the average correlation among assets to increase when the market falls and vice-versa. Thus, assuming that the correlation between assets is a constant over time seems unrealistic. Nonetheless, these changes in the correlation structure as a consequence of changes in the market’s return suggests that correlation shifts can be modelled as a function of the market return. This is the idea behind the model of Spurgin et al (2000), which models the beta or systematic risk, of the asset as a function of the returns in the market. This is an approach that offers particular attractions to fund managers as it suggest ways by which they can adjust their portfolios to benefit from changes in overall market conditions. In this paper the Spurgin et al (2000) model is applied to 31 real estate market segments in the UK using monthly data over the period 1987:1 to 2000:12. The results show that a number of market segments display significant negative correlation shifts, while others show significantly positive correlation shifts. Using this information fund managers can make strategic and tactical portfolio allocation decisions based on expectations of market volatility alone and so help them achieve greater portfolio performance overall and especially during different phases of the real estate cycle.
Resumo:
Approximate Bayesian computation (ABC) has become a popular technique to facilitate Bayesian inference from complex models. In this article we present an ABC approximation designed to perform biased filtering for a Hidden Markov Model when the likelihood function is intractable. We use a sequential Monte Carlo (SMC) algorithm to both fit and sample from our ABC approximation of the target probability density. This approach is shown to, empirically, be more accurate w.r.t.~the original filter than competing methods. The theoretical bias of our method is investigated; it is shown that the bias goes to zero at the expense of increased computational effort. Our approach is illustrated on a constrained sequential lasso for portfolio allocation to 15 constituents of the FTSE 100 share index.
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD UK database over the period 1981 to 2003 than normally distributed risk models. This finding mirrors results in the US and Australia using identical methodology. Real estate investment risk is heteroskedastic, but the characteristic exponent of the investment risk function is constant across time – yet it may vary by property type. Asset diversification is far less effective at reducing the impact of non‐systematic investment risk on real estate portfolios than in the case of assets with normally distributed investment risk. The results, therefore, indicate that multi‐risk factor portfolio allocation models based on measures of investment codependence from finite‐variance statistics are ineffective in the real estate context
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD database over the period 1981 to 2003 than Normally distributed risk models, which mirrors results in the U.S. and Australia using identical methodology. Real estate investment risk is heteroscedastic, but the Characteristic Exponent of the investment risk function is constant across time yet may vary by property type. Asset diversification is far less effective at reducing the impact of non-systematic investment risk on real estate portfolios than in the case of assets with Normally distributed investment risk. Multi-risk factor portfolio allocation models based on measures of investment codependence from finite-variance statistics are ineffectual in the real estate context.
Resumo:
This paper review the literature on the distribution of commercial real estate returns. There is growing evidence that the assumption of normality in returns is not safe. Distributions are found to be peaked, fat-tailed and, tentatively, skewed. There is some evidence of compound distributions and non-linearity. Public traded real estate assets (such as property company or REIT shares) behave in a fashion more similar to other common stocks. However, as in equity markets, it would be unwise to assume normality uncritically. Empirical evidence for UK real estate markets is obtained by applying distribution fitting routines to IPD Monthly Index data for the aggregate index and selected sub-sectors. It is clear that normality is rejected in most cases. It is often argued that observed differences in real estate returns are a measurement issue resulting from appraiser behaviour. However, unsmoothing the series does not assist in modelling returns. A large proportion of returns are close to zero. This would be characteristic of a thinly-traded market where new information arrives infrequently. Analysis of quarterly data suggests that, over longer trading periods, return distributions may conform more closely to those found in other asset markets. These results have implications for the formulation and implementation of a multi-asset portfolio allocation strategy.
Resumo:
This paper seeks to increase the understanding of the performance implications for investors who choose to combine an unlisted real estate portfolio (in this case German Spezialfonds) with a (global) listed real estate element. We call this a “blended” approach to real estate allocations. For the avoidance of doubt, in this paper we are dealing purely with real estate equity (listed and unlisted) allocations, and do not incorporate real estate debt (listed or unlisted) or direct property into the process. A previous paper (Moss and Farrelly 2014) showed the benefits of the blended approach as it applied to UK Defined Contribution Pension Schemes. The catalyst for this paper has been the recent attention focused on German pension fund allocations, which have a relatively low (real estate) equity content, and a high bond content. We have used the MSCI Spezialfonds Index as a proxy for domestic German institutional real estate allocations, and the EPRA Global Developed Index as a proxy for a global listed real estate allocation. We also examine whether a rules based trading strategy, in this case Trend Following, can improve the risk adjusted returns above those of a simple buy and hold strategy for our sample period 2004-2015. Our findings are that by blending a 30% global listed portfolio with a 70% allocation (as opposed to a typical 100% weighting) to Spezialfonds, the real estate allocation returns increase from 2.88% p.a. to 5.42% pa. Volatility increases, but only to 6.53%., but there is a noticeable impact on maximum drawdown which increases to 19.4%. By using a Trend Following strategy raw returns are improved from 2.88% to 6.94% p.a. , The Sharpe Ratio increases from 1.05 to 1.49 and the Maximum Drawdown ratio is now only 1.83% compared to 19.4% using a buy and hold strategy . Finally, adding this (9%) real estate allocation to a mixed asset portfolio allocation typical for German pension funds there is an improvement in both the raw return (from 7.66% to 8.28%) and the Sharpe Ratio (from 0.91 to 0.98).
Resumo:
Liquidity is a fundamentally important facet of investments, but there is no single measure that quantifies it perfectly. Instead, a range of measures are necessary to capture different dimensions of liquidity such as the breadth and depth of markets, the costs of transacting, the speed with which transactions can occur and the resilience of prices to trading activity. This article considers how different dimensions have been measured in financial markets and for various forms of real estate investment. The purpose of this exercise is to establish the range of liquidity measures that could be used for real estate investments before considering which measures and questions have been investigated so far. Most measures reviewed here are applicable to public real estate, but not all can be applied to private real estate assets or funds. Use of a broader range of liquidity measures could help real estate researchers tackle issues such as quantification of illiquidity premiums for the real estate asset class or different types of real estate, and how liquidity differences might be incorporated into portfolio allocation models.