903 resultados para portable 3D laser scanning system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM), in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paper submitted to the 43rd International Symposium on Robotics (ISR2012), Taipei, Taiwan, Aug. 29-31, 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate three-dimensional representations of cultural heritage sites are highly valuable for scientific study, conservation, and educational purposes. In addition to their use for archival purposes, 3D models enable efficient and precise measurement of relevant natural and architectural features. Many cultural heritage sites are large and complex, consisting of multiple structures spatially distributed over tens of thousands of square metres. The process of effectively digitising such geometrically complex locations requires measurements to be acquired from a variety of viewpoints. While several technologies exist for capturing the 3D structure of objects and environments, none are ideally suited to complex, large-scale sites, mainly due to their limited coverage or acquisition efficiency. We explore the use of a recently developed handheld mobile mapping system called Zebedee in cultural heritage applications. The Zebedee system is capable of efficiently mapping an environment in three dimensions by continually acquiring data as an operator holding the device traverses through the site. The system was deployed at the former Peel Island Lazaret, a culturally significant site in Queensland, Australia, consisting of dozens of buildings of various sizes spread across an area of approximately 400 × 250 m. With the Zebedee system, the site was scanned in half a day, and a detailed 3D point cloud model (with over 520 million points) was generated from the 3.6 hours of acquired data in 2.6 hours. We present results demonstrating that Zebedee was able to accurately capture both site context and building detail comparable in accuracy to manual measurement techniques, and at a greatly increased level of efficiency and scope. The scan allowed us to record derelict buildings that previously could not be measured because of the scale and complexity of the site. The resulting 3D model captures both interior and exterior features of buildings, including structure, materials, and the contents of rooms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A portable 3D laser scanning system has been designed and built for robot vision. By tilting the charge coupled device (CCD) plane of portable 3D scanning system according to the Scheimpflug condition, the depth-of-view is successfully extended from less than 40 to 100 mm. Based on the tilted camera model, the traditional two-step camera calibration method is modified by introducing the angle factor. Meanwhile, a novel segmental calibration approach, i.e., dividing the whole work range into two parts and calibrating, respectively, with corresponding system parameters, is proposed to effectively improve the measurement accuracy of the large depth-of-view 3D laser scanner. In the process of 3D reconstruction, different calibration parameters are used to transform the 2D coordinates into 3D coordinates according to the different positions of the image in the CCD plane, and the measurement accuracy of 60 mu m is obtained experimentally. Finally, the experiment of scanning a lamina by the large depth-of-view portable 3D laser scanner used by an industrial robot IRB 4400 is also employed to demonstrate the effectiveness and high measurement accuracy of our scanning system. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the combination of abdominoplasty with liposuction of both flanks with regards to length of scar, complications, and patient's satisfaction. A retrospective analysis of 35 patients who underwent esthetic abdominoplasty at our institution between 2002 and 2004 was performed. Thirteen patients underwent abdominoplasty with liposuction of both flanks, 22 patients underwent conventional abdominoplasty. Liposuction of the flanks did not increase the rate of complications of the abdominoplasty procedures. We found a tendency toward shorter scars in patients who underwent abdominoplasty combined with liposuction of the flanks. Implementation of 3-dimensional laser surface scanning to objectify the postoperative outcomes, documented a comparable degree of flatness of the achieved body contouring in both procedures. 3-dimensional laser surface scanning can be a valuable tool to objectify assessment of postoperative results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The project demonstrates the use of modern technologies for preservation and presentation of the cultural and historical heritage. The idea is a database of cultural and historical heritage sites to be created applying three dimensional laser scanning technology and a combination of geodetic and photogrammetric methods and shooting techniques. For the purposes of carrying out this project, we have focused on some heritage sites in the central part of Sofia. We decided to include these particular buildings because of the fact that there is hardly another city in the world where within a radius of 400 m are located four temples of different religions - Jewish, Muslim, Orthodox and Catholic. In the recent years, preservation of cultural heritage has been increasingly linked to objectives of sustainable development. Today, it has become clear that cultural heritage is also an economic resource that should be used for further economic development (through compulsory preservation of its authentic cultural values). There has been a more active public debate on the role of cultural heritage, regarding the following topics: improving the quality of life through development of cultural tourism, leading to an increase of the employment rate, constantly improving the business climate, etc. Cultural heritage preservation is becoming one of the priority objectives of the urban development policy. The focus has been shifted to new ways of preservation, mainly combinations of sophisticated technological solutions and their application for the purposes of preservation and dissemination of the cultural heritage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural nanopatterned surfaces (nNPS) present on insect wings have demonstrated bactericidal activity [1, 2]. Fabricated nanopatterned surfaces (fNPS) derived by characterization of these wings have also shown superior bactericidal activity [2]. However bactericidal NPS topologies vary in both geometry and chemical characteristics of the individual features in different insects and fabricated surfaces, rendering it difficult to ascertain the optimum geometrical parameters underling bactericidal activity. This situation calls for the adaptation of new and emerging techniques, which are capable of fabricating and characterising comparable structures to nNPS from biocompatible materials. In this research, CAD drawn nNPS representing an area of 10 μm x10 μm was fabricated on a fused silica glass by Nanoscribe photonic professional GT 3D laser lithography system using two photon polymerization lithography. The glass was cleaned with acetone and isopropyl alcohol thrice and a drop of IP-DIP photoresist from Nanoscribe GmbH was cast onto the glass slide prior to patterning. Photosensitive IP-DIP resist was polymerized with high precision to make the surface nanopatterns using a 780 nm wavelength laser. Both moving-beam fixedsample (MBFS) and fixed-beam moving-sample (FBMS) fabrication approaches were tested during the fabrication process to determine the best approach for the precise fabrication of the required nanotopological pattern. Laser power was also optimized to fabricate the required fNPS, where this was changed from 3mW to 10mW to determine the optimum laser power for the polymerization of the photoresist for fabricating FNPS...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An indirect method for the georeferencing of 3D point clouds obtained with terrestrial laser scanning (TLS) data using control lines is presented. This technique could be used for rapid data acquisition where resources do not permit the use of expensive navigation sensors or the placement of pre-signalised targets. The most important characteristic is the development of a mathematical model based on the principle that the direction vector of the TLS straight line is coplanar with the plane defined by the origin of the TLS system, one endpoint of a control line and the direction vector of the control line in the ground reference coordinate system. The transformation parameters are estimated by minimising the distance between the control lines and their corresponding TLS straight lines. The proposed method was tested using both simulated and real data, and the advantages of this new approach are compared with conventional surveying methods. © 2013 This article is a U.S. Government work and is in the public domain in the USA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Virtopsy project, a multi-disciplinary project that involves forensic science, diagnostic imaging, computer science, automation technology, telematics and biomechanics, aims to develop new techniques to improve the outcome of forensic investigations. This paper presents a new approach in the field of minimally invasive virtual autopsy for a versatile robotic system that is able to perform three-dimensional (3D) surface scans as well as post mortem image-guided soft tissue biopsies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A laser scanning microscope collects information from a thin, focal plane and ignores out of focus information. During the past few years it has become the standard imaging method to characterise cellular morphology and structures in static as well as in living samples. Laser scanning microscopy combined with digital image restoration is an excellent tool for analysing the cellular cytoarchitecture, expression of specific proteins and interactions of various cell types, thus defining valid criteria for the optimisation of cell culture models. We have used this tool to establish and evaluate a three dimensional model of the human epithelial airway wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims - To study the interchangeability of the measurements of the optic disc topography obtained by one computerised image analyser and one confocal laser tomographic scanner. Methods - One eye of 28 patients with glaucoma or glaucoma suspects was studied. All cases had simultaneous stereoscopic disc photographs taken with the fundus camera Topcon TRC-SS and optic disc examination with the Heidelberg retina tomograph (HRT) during the same visit. The optic disc photographs were digitised and analysed with the Topcon ImageNet (TI) system. Three variables of the optic disc topography provided by the TI and the HRT were compared - cup volume (CV), rim area (RA), and cup area to disc area ratio (CA/DA). Results - The mean values of CV and RA provided by the TI (0.52 (SD 0.32) mm and 1.58 (0.39) mm , respectively) were greater (p <0.01) than the mean values of CV and RA determined by the HRT (0.32 (0.25) mm , and 1.33 (0.47) mm , respectively). The mean value of CA/DA provided by the TI (0.42 (0.14)) and the HRT (0.42 (0.18)) was similar (p = 0.93). Correlation coefficients between measurements obtained by the two methods ranged from 0.53 to 0.73. Conclusion - There was a significant discrepancy in the measurements of rim area and cup volume of the optic disc obtained by a computerised image analyser and a laser scanning tomograph.