901 resultados para polygenic score


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between major depressive disorder (MDD) and bipolar disorder (BD) remains controversial. Previous research has reported differences and similarities in risk factors for MDD and BD, such as predisposing personality traits. For example, high neuroticism is related to both disorders, whereas openness to experience is specific for BD. This study examined the genetic association between personality and MDD and BD by applying polygenic scores for neuroticism, extraversion, openness to experience, agreeableness and conscientiousness to both disorders. Polygenic scores reflect the weighted sum of multiple single-nucleotide polymorphism alleles associated with the trait for an individual and were based on a meta-analysis of genome-wide association studies for personality traits including 13,835 subjects. Polygenic scores were tested for MDD in the combined Genetic Association Information Network (GAIN-MDD) and MDD2000+ samples (N=8921) and for BD in the combined Systematic Treatment Enhancement Program for Bipolar Disorder and Wellcome Trust Case-Control Consortium samples (N=6329) using logistic regression analyses. At the phenotypic level, personality dimensions were associated with MDD and BD. Polygenic neuroticism scores were significantly positively associated with MDD, whereas polygenic extraversion scores were significantly positively associated with BD. The explained variance of MDD and BD, approximately 0.1%, was highly comparable to the variance explained by the polygenic personality scores in the corresponding personality traits themselves (between 0.1 and 0.4%). This indicates that the proportions of variance explained in mood disorders are at the upper limit of what could have been expected. This study suggests shared genetic risk factors for neuroticism and MDD on the one hand and for extraversion and BD on the other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction. METHODS We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls. RESULTS The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk. CONCLUSIONS Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction. Prostate 75:1467–1474, 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Migraine has been defined as a common disabling primary headache disorder. Epidemiology studies have provided with the undeniable evidence of genetic components as active players in the development of the disease under a polygenic model in which multiple risk alleles exert modest individual effects. Our objective was to test the contribution of a polygenic effect to migraine risk in the Norfolk Island population using a panel of SNPs reported to be disease associated in published migraine GWAS. We also investigated whether individual SNPs were associated with gene expression levels measured in whole-blood. Polygenic scores were calculated in a total of 285 related individuals (74 cases, 211 controls) from the Norfolk Island using 51 SNPs previously reported to be associated with migraine in published GWAS. The association between polygenic score and migraine case-control status was tested using logistic regression. Results indicate that a migraine polygenic risk score was associated with migraine case-control status in this population (P=0.016). This supports the hypothesis that multiple SNPs with weak effects collectively contribute to migraine risk in this population. Amongst the SNPs included in the polygenic model, 4 were associated with the expression of the USMG5 gene, including rs171251 (P = 0.012). Results from this study provide evidence for a polygenic contribution to migraine risk in an isolated population and highlight specific SNPs that regulate the expression of USMG5, a gene critical for mitochondrial function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The identification of subjects at high risk for Alzheimer’s disease is important for prognosis and early intervention. We investigated the polygenic architecture of Alzheimer’s disease and the accuracy of Alzheimer’s disease prediction models, including and excluding the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and 37 154 controls obtained from the International Genomics of Alzheimer’s Project (IGAP). Polygenic score analysis tested whether the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and 1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component enriched in Alzheimer’s disease (P = 4.9 × 10−26). This enrichment remained significant after APOE and other genome-wide associated regions were excluded (P = 3.4 × 10−19). The best prediction accuracy AUC = 78.2% (95% confidence interval 77–80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion, Alzheimer’s disease has a significant polygenic component, which has predictive utility for Alzheimer’s disease risk and could be a valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case prediction from chance with increased prediction at polygenic extremes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation. METHODS We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping. RESULTS We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 x 10(-28) for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 x 10(-20) for the CE score in MO). CONCLUSIONS Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A genome-wide association study (GWAS) of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient of determination R(2) approximately 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for approximately 2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The differential susceptibly hypothesis suggests that certain genetic variants moderate the effects of both negative and positive environments on mental health and may therefore be important predictors of response to psychological treatments. Nevertheless, the identification of such variants has so far been limited to preselected candidate genes. In this study we extended the differential susceptibility hypothesis from a candidate gene to a genome-wide approach to test whether a polygenic score of environmental sensitivity predicted response to Cognitive Behavioural Therapy (CBT) in children with anxiety disorders. Methods: We identified variants associated with environmental sensitivity using a novel method in which within-pair variability in emotional problems in 1026 monozygotic (MZ) twin pairs was examined as a function of the pairs’ genotype. We created a polygenic score of environmental sensitivity based on the whole-genome findings and tested the score as a moderator of parenting on emotional problems in 1,406 children and response to individual, group and brief parent-led CBT in 973 children with anxiety disorders. Results: The polygenic score significantly moderated the effects of parenting on emotional problems and the effects of treatment. Individuals with a high score responded significantly better to individual CBT than group CBT or brief parent-led CBT (remission rates: 70.9%, 55.5% and 41.6% respectively). Conclusions: Pending successful replication, our results should be considered exploratory. Nevertheless, if replicated, they suggest that individuals with the greatest environmental sensitivity may be more likely to develop emotional problems in adverse environments, but also benefit more from the most intensive types of treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A previous genome-wide association study (GWAS) of more than 100,000 individuals identified molecular-genetic predictors of educational attainment. We undertook in-depth life-course investigation of the polygenic score derived from this GWAS using the four-decade Dunedin Study (N = 918). There were five main findings. First, polygenic scores predicted adult economic outcomes even after accounting for educational attainments. Second, genes and environments were correlated: Children with higher polygenic scores were born into better-off homes. Third, children's polygenic scores predicted their adult outcomes even when analyses accounted for their social-class origins; social-mobility analysis showed that children with higher polygenic scores were more upwardly mobile than children with lower scores. Fourth, polygenic scores predicted behavior across the life course, from early acquisition of speech and reading skills through geographic mobility and mate choice and on to financial planning for retirement. Fifth, polygenic-score associations were mediated by psychological characteristics, including intelligence, self-control, and interpersonal skill. Effect sizes were small. Factors connecting DNA sequence with life outcomes may provide targets for interventions to promote population-wide positive development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Migraine and major depressive disorder (MDD) are comorbid, moderately heritable and to some extent influenced by the same genes. In a previous paper, we suggested the possibility of causality (one trait causing the other) underlying this comorbidity. We present a new application of polygenic (genetic risk) score analysis to investigate the mechanisms underlying the genetic overlap of migraine and MDD. Genetic risk scores were constructed based on data from two discovery samples in which genome-wide association analyses (GWA) were performed for migraine and MDD, respectively. The Australian Twin Migraine GWA study (N = 6,350) included 2,825 migraine cases and 3,525 controls, 805 of whom met the diagnostic criteria for MDD. The RADIANT GWA study (N = 3,230) included 1,636 MDD cases and 1,594 controls. Genetic risk scores for migraine and for MDD were used to predict pure and comorbid forms of migraine and MDD in an independent Dutch target sample (NTR-NESDA, N = 2,966), which included 1,476 MDD cases and 1,058 migraine cases (723 of these individuals had both disorders concurrently). The observed patterns of prediction suggest that the 'pure' forms of migraine and MDD are genetically distinct disorders. The subgroup of individuals with comorbid MDD and migraine were genetically most similar to MDD patients. These results indicate that in at least a subset of migraine patients with MDD, migraine may be a symptom or consequence of MDD. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from a true polygenic signal and bias. We have developed an approach, LD Score regression, that quantifies the contribution of each by examining the relationship between test statistics and linkage disequilibrium (LD). The LD Score regression intercept can be used to estimate a more powerful and accurate correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of the inflation in test statistics in many GWAS of large sample size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) of schizophrenia have yielded more than 100 common susceptibility variants, and strongly support a substantial polygenic contribution of a large number of small allelic effects. It has been hypothesized that familial schizophrenia is largely a consequence of inherited rather than environmental factors. We investigated the extent to which familiality of schizophrenia is associated with enrichment for common risk variants detectable in a large GWAS. We analyzed single nucleotide polymorphism (SNP) data for cases reporting a family history of psychotic illness (N = 978), cases reporting no such family history (N = 4,503), and unscreened controls (N = 8,285) from the Psychiatric Genomics Consortium (PGC1) study of schizophrenia. We used a multinomial logistic regression approach with model-fitting to detect allelic effects specific to either family history subgroup. We also considered a polygenic model, in which we tested whether family history positive subjects carried more schizophrenia risk alleles than family history negative subjects, on average. Several individual SNPs attained suggestive but not genome-wide significant association with either family history subgroup. Comparison of genome-wide polygenic risk scores based on GWAS summary statistics indicated a significant enrichment for SNP effects among family history positive compared to family history negative cases (Nagelkerke's R(2 ) = 0.0021; P = 0.00331; P-value threshold <0.4). Estimates of variability in disease liability attributable to the aggregate effect of genome-wide SNPs were significantly greater for family history positive compared to family history negative cases (0.32 and 0.22, respectively; P = 0.031). We found suggestive evidence of allelic effects detectable in large GWAS of schizophrenia that might be specific to particular family history subgroups. However, consideration of a polygenic risk score indicated a significant enrichment among family history positive cases for common allelic effects. Familial illness might, therefore, represent a more heritable form of schizophrenia, as suggested by previous epidemiological studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim – To develop and assess the predictive capabilities of a statistical model that relates routinely collected Trauma Injury Severity Score (TRISS) variables to length of hospital stay (LOS) in survivors of traumatic injury. Method – Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until discharge from Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Cubic-root transformed LOS was analysed using two-level mixed-effects regression models. Results – 1498 eligible patients were identified, 1446 (97%) injured from a blunt mechanism and 52 (3%) from a penetrating mechanism. For blunt mechanism trauma, 1096 (76%) were male, average age was 37 years (range: 15-94 years), and LOS and TRISS score information was available for 1362 patients. Spearman’s correlation and the median absolute prediction error between LOS and the original TRISS model was ρ=0.31 and 10.8 days, respectively, and between LOS and the final multivariable two-level mixed-effects regression model was ρ=0.38 and 6.0 days, respectively. Insufficient data were available for the analysis of penetrating mechanism models. Conclusions – Neither the original TRISS model nor the refined model has sufficient ability to accurately or reliably predict LOS. Additional predictor variables for LOS and other indicators for morbidity need to be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims – To develop local contemporary coefficients for the Trauma Injury Severity Score in New Zealand, TRISS(NZ), and to evaluate their performance at predicting survival against the original TRISS coefficients. Methods – Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until presentation at Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Coefficients were estimated using ordinary and multilevel mixed-effects logistic regression models. Results – 1735 eligible patients were identified, 1672 (96%) injured from a blunt mechanism and 63 (4%) from a penetrating mechanism. For blunt mechanism trauma, 1250 (75%) were male and average age was 38 years (range: 15-94 years). TRISS information was available for 1565 patients of whom 204 (13%) died. Area under the Receiver Operating Characteristic (ROC) curves was 0.901 (95%CI: 0.879-0.923) for the TRISS(NZ) model and 0.890 (95% CI: 0.866-0.913) for TRISS (P<0.001). Insufficient data were available to determine coefficients for penetrating mechanism TRISS(NZ) models. Conclusions – Both TRISS models accurately predicted survival for blunt mechanism trauma. However, TRISS(NZ) coefficients were statistically superior to TRISS coefficients. A strong case exists for replacing TRISS coefficients in the New Zealand benchmarking software with these updated TRISS(NZ) estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A data-driven background dataset refinement technique was recently proposed for SVM based speaker verification. This method selects a refined SVM background dataset from a set of candidate impostor examples after individually ranking examples by their relevance. This paper extends this technique to the refinement of the T-norm dataset for SVM-based speaker verification. The independent refinement of the background and T-norm datasets provides a means of investigating the sensitivity of SVM-based speaker verification performance to the selection of each of these datasets. Using refined datasets provided improvements of 13% in min. DCF and 9% in EER over the full set of impostor examples on the 2006 SRE corpus with the majority of these gains due to refinement of the T-norm dataset. Similar trends were observed for the unseen data of the NIST 2008 SRE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When communicating emotion in music, composers and performers encode their expressive intentions through the control of basic musical features such as: pitch, loudness, timbre, mode, and articulation. The extent to which emotion can be controlled through the systematic manipulation of these features has not been fully examined. In this paper we present CMERS, a Computational Music Emotion Rule System for the control of perceived musical emotion that modifies features at the levels of score and performance in real-time. CMERS performance was evaluated in two rounds of perceptual testing. In experiment I, 20 participants continuously rated the perceived emotion of 15 music samples generated by CMERS. Three music works, each with five emotional variations were used (normal, happy, sad, angry, and tender). The intended emotion by CMERS was correctly identified 78% of the time, with significant shifts in valence and arousal also recorded, regardless of the works’ original emotion.