985 resultados para polar bears
Resumo:
Teacher resources for Lesson G in the Discover Oceanography 'Scheme of Work' for use in schools.
Resumo:
Polar bears are key indicators of the effects of climate change on the arctic ecosystem, because their existence is directly related to the sea ice habitat, where they hunt. As the Arctic continues to warm, their habitat will be reduced further and local extinction is likely to occur, especially in southern populations.
Resumo:
We estimated demographic parameters and harvest risks for polar bears (Ursus maritimus) inhabiting the Gulf of Boothia, Nunavut, from 1976 to 2000. We computed survival and abundance from capture–recapture and recovery data (630 marks) using a Burnham joint live–dead model implemented in program MARK. Annual mean total survival (including harvest) was 0.889 ± 0.179 ( x ± 1 SE) for cubs, 0.883 ± 0.087 for subadults (ages 1–4), 0.919 ± 0.044 for adult females, and 0.917 ± 0.041 for adult males. Abundance in the last 3 yr of study was 1,592 ± 361 bears. Mean size of newborn litters was 1.648 ± 0.098 cubs. By age 7, 0.97 ± 0.30 of available females were producing litters. Harvest averaged 38.4 ± 4.2 bears/year in the last 5 yr of study; however, the 2002–2007 kill averaged 56.4 bears/yr. We used a harvested Population Viability Analysis (PVA) to examine impacts of increasing rates of harvest. We estimated the current population growth rate, λH, to be 1.025 ± 0.032. Although this suggests the population is growing, progressive environmental changes may require more frequent population inventory studies to maintain the same levels of harvest risk.
Resumo:
Polybrominated diphenyl ethers (PBDEs) were analysed in adipose tissue from 92 East Greenland polar bears (Ursus maritimus) sampled during 1999-2001. Mean SumPBDE concentrations were 70 ng/g lipid weight (lw) (range: 22-192 ng/g lw) and showed no relationship with age or sex. Of the 32 analysed PBDE congeners; BDE47, BDE153, BDE99 and BDE100 dominated, and comprised 99.6% of the SumPBDE concentration. The SumPBDE concentration had a highly significant correlation with SumPCB, SumCHL, dieldrin, HCB and SumHCH concentrations. We found a seasonal pattern of median SumPBDE concentration with 1.2 to 1.8 times higher concentrations in March to July than the rest of the year. The seasonal variation also provides a clue to the seasonal exposure, bio-availability, toxic exposure and degradation. We suggest that future geographical PBDE data comparisons may not need corrections for sex or age, but such data sets should be corrected for seasonal variability, using the presented correctional trigonometric regression.
Resumo:
To demonstrate the ability to assess long-term hypothalamic-pituitary-adrenocortical (HPA) axis activity in polar bears (Ursus maritimus), a pilot study was conducted in which cortisol concentration was analyzed in hair from 7 female (3-19 years) and 10 male (6-19 years) East Greenland polar bears sampled in 1994-2006. The hair was chosen as matrix as it is non-invasive, seasonally harmonized, and has been validated as an index of long-term changes in cortisol levels. The samples were categorized according to contamination: eight were clean (2 females, 6 males), 5 had been contaminated with bear blood (2 F, 3 M), and 4 with bear fat (3 F, 1 M). There was no significant difference in cortisol concentration between the three categories after external contamination was removed. However, contaminated hair samples should be cleaned before cortisol determination. Average hair cortisol concentration was 8.90 pg/mg (range: 5.5 to 16.4 pg/mg). There was no significant correlation between cortisol concentration and age (p = 0.81) or sampling year (p = 0.11). However, females had higher mean cortisol concentration than males (females mean: 11.0 pg/mg, males: 7.3 pg/mg; p = 0.01). The study showed that polar bear hair contains measurable amounts of cortisol and that cortisol in hair may be used in studies of long-term stress in polar bears.
Resumo:
The limited knowledge and/or the inability to control physiological condition parameters that influence the fate of organohalogen contaminants (OHCs) has been the foremost confounding aspect in monitoring programs and health risk assessments of wild top predators in the Arctic such as the polar bear (Ursus maritimus). In the present comparative study, we used a potential surrogate Canoidea species for the East Greenland polar bear, the captive sledge dog (Canis familiaris), to investigate some factors that may influence the bioaccumulation and biotransformation of major chlorinated and brominated OHCs in adipose tissue and blood (plasma) of control (fed commercial pork fat) and exposed (fed West Greenland minke whale (Balaenoptera acutorostrata) blubber) adult female sledge dogs. Furthermore, we compared the patterns and concentrations of OHCs and their known or suggested hydroxylated (OH) metabolites (e.g., OH-PCBs) in sledge dogs with those in adipose tissue and blood (plasma) of East Greenland adult female polar bears, and blubber of their main prey species, the ringed seal (Pusa hispida). The two-year feeding regime conducted with sledge dogs led to marked differences in overall adipose tissue (and plasma) OHC residue accumulation between the control and exposed groups. Characteristic prey-to-predator OHC bioaccumulation dynamics for major PCB and PBDE congeners (patterns and concentrations) and biotransformation capacity with respect to PCB metabolite formation and OH-PCB retention distinguished, to some extent, captive sledge dogs and wild polar bears. Based on the present findings, we conclude that the use of surrogate species in toxicological investigations for species in the Canoidea family should be done with great caution, although they remain essential in the context of contaminants research with sensitive arctic top carnivore species such as the polar bear.
Resumo:
Little is known about the prevalence of the parasite Toxoplasma gondii in the arctic marine food chain of Svalbard, Norway. In this study, plasma samples were analyzed for T. gondii antibodies using a direct agglutination test. Antibody prevalence was 45.6% among polar bears (Ursus maritimus), 18.7% among ringed seals (Pusa hispida) and 66.7% among adult bearded seals (Erignathus barbatus) from Svalbard, but no sign of antibodies were found in bearded seal pups, harbour seals (Phoca vitulina), white whales (Delphinapterus leucas) or narwhals (Monodon monoceros) from the same area. Prevalence was significantly higher in male polar bears (52.3%) compared with females (39.3%), likely due to dietary differences between the sexes. Compared to an earlier study, T. gondii prevalence in polar bears has doubled in the past decade. Consistently, an earlier study on ringed seals did not detect T. gondii. The high recent prevalence in polar bears, ringed seals and bearded seals could be caused by an increase in the number or survivorship of oocysts being transported via the North Atlantic Current to Svalbard from southern latitudes. Warmer water temperatures have led to influxes of temperate marine invertebrate filter-feeders that could be vectors for oocysts and warmer water is also likely to favour higher survivorship of oocycts. However, a more diverse than normal array of migratory birds in the Archipelago recently, as well as a marked increase in cruise-ship and other human traffic are also potential sources of T. gondii.
Resumo:
We investigated the multivariate relationships between adipose tissue residue levels of 48 individual organohalogen contaminants (OHCs) and circulating thyroid hormone (TH) levels in polar bears (Ursus maritimus) from East Greenland (1999-2001, n = 62), using projection to latent structure (PLS) regression for four groupings of polar bears; subadults (SubA), adult females with cubs (AdF_N), adult females without cubs (AdF_S) and adult males (AdM). In the resulting significant PLS models for SubA, AdF_N and AdF_S, some OHCs were especially important in explaining variations in circulating TH levels: polybrominated diphenylether (PBDE)-99, PBDE-100, PBDE-153, polychlorinated biphenyl (PCB)-52, PCB-118, cis-nonachlor, trans-nonachlor, trichlorobenzene (TCB) and pentachlorobenzene (QCB), and both negative and positive relationships with THs were found. In addition, the models revealed that DDTs had a positive influence on total 3,5,3'-triiodothyronine (TT3) in AdF_S, and that a group of 17 higher chlorinated ortho-PCBs had a positive influence on total 3,5,3',5'-tetraiodothyronine (thyroxine, TT4) in AdF_N. TH levels in AdM seemed less influenced by OHCs because of non-significant PLS models. TH levels were also influenced by biological factors such as age, sex, body size, lipid content of adipose tissue and sampling date. When controlling for biological variables, the major relationships from the PLS models for SubA, AdF_N and AdF_S were found significant in partial correlations. The most important OHCs that influenced TH levels in the significant PLS models may potentially act through similar mechanisms on the hypothalamic-pituitary-thyroid (HPT) axis, suggesting that both combined effects by dose and response addition and perhaps synergistic potentiation may be a possibility in these polar bears. Statistical associations are not evidence per se of biological cause-effect relationships. Still, the results of the present study indicate that OHCs may affect circulating TH levels in East Greenland polar bears, adding to the "weight of evidence" suggesting that OHCs might interfere with thyroid homeostasis in polar bears.