(Table 1) Circulating levels of TT3 and TT4, and age, length, girth, and estimated body mass in polar bears (Ursus maritimus) from East Greenland 1999-2001


Autoria(s): Villanger, Gro D
Cobertura

MEDIAN LATITUDE: 71.500000 * MEDIAN LONGITUDE: -25.000000 * SOUTH-BOUND LATITUDE: 69.000000 * WEST-BOUND LONGITUDE: -25.000000 * NORTH-BOUND LATITUDE: 74.000000 * EAST-BOUND LONGITUDE: -25.000000 * DATE/TIME START: 1999-01-01T00:00:00 * DATE/TIME END: 2002-12-31T00:00:00

Data(s)

12/01/2011

Resumo

We investigated the multivariate relationships between adipose tissue residue levels of 48 individual organohalogen contaminants (OHCs) and circulating thyroid hormone (TH) levels in polar bears (Ursus maritimus) from East Greenland (1999-2001, n = 62), using projection to latent structure (PLS) regression for four groupings of polar bears; subadults (SubA), adult females with cubs (AdF_N), adult females without cubs (AdF_S) and adult males (AdM). In the resulting significant PLS models for SubA, AdF_N and AdF_S, some OHCs were especially important in explaining variations in circulating TH levels: polybrominated diphenylether (PBDE)-99, PBDE-100, PBDE-153, polychlorinated biphenyl (PCB)-52, PCB-118, cis-nonachlor, trans-nonachlor, trichlorobenzene (TCB) and pentachlorobenzene (QCB), and both negative and positive relationships with THs were found. In addition, the models revealed that DDTs had a positive influence on total 3,5,3'-triiodothyronine (TT3) in AdF_S, and that a group of 17 higher chlorinated ortho-PCBs had a positive influence on total 3,5,3',5'-tetraiodothyronine (thyroxine, TT4) in AdF_N. TH levels in AdM seemed less influenced by OHCs because of non-significant PLS models. TH levels were also influenced by biological factors such as age, sex, body size, lipid content of adipose tissue and sampling date. When controlling for biological variables, the major relationships from the PLS models for SubA, AdF_N and AdF_S were found significant in partial correlations. The most important OHCs that influenced TH levels in the significant PLS models may potentially act through similar mechanisms on the hypothalamic-pituitary-thyroid (HPT) axis, suggesting that both combined effects by dose and response addition and perhaps synergistic potentiation may be a possibility in these polar bears. Statistical associations are not evidence per se of biological cause-effect relationships. Still, the results of the present study indicate that OHCs may affect circulating TH levels in East Greenland polar bears, adding to the "weight of evidence" suggesting that OHCs might interfere with thyroid homeostasis in polar bears.

Formato

text/tab-separated-values, 180 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.841460

doi:10.1594/PANGAEA.841460

Idioma(s)

en

Publicador

PANGAEA

Relação

Dietz, Rune; Rigét, Frank F; Sonne, Christian; Letcher, Robert J; Born, Erik W; Muir, Derek CG (2004): (Table 2) Organochlorine concentrations in polar bears (Ursus maritimus) from East Greenland 1999-2001. doi:10.1594/PANGAEA.841462 (See this dataset for source data of Table 2 of Villanger et al. 2011)

Derocher, Andrew E; Wiig, Øystein (2002): Postnatal growth in body length and mass of polar bears (Ursus maritimus) at Svalbard. Journal of Zoology, 256(3), 343-349, doi:10.1017/S0952836902000377

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Villanger, Gro D; Jenssen, Bjørn Munro; Fjeldberg, Rita R; Letcher, Robert J; Muir, Derek CG; Kirkegaard, Maja; Sonne, Christian; Dietz, Rune (2011): Exposure to mixtures of organohalogen contaminants and associative interactions with thyroid hormones in East Greenland polar bears (Ursus maritimus). Environment International, 37(4), 694-708, doi:10.1016/j.envint.2011.01.012

Palavras-Chave #Age, relative, number of years; Age, standard deviation; Biological sample; BIOS; Day of the year; East Greenland; Girth, axillary; Group; International Polar Year (2007-2008); IPY; Length, standard deviation; Mass, standard deviation; Record length; Sample amount, subset; ScoresbyS_area; Species; Standard deviation; Thyroxine, standard deviation; Thyroxine, total; Time coverage; Triiodothyronine, standard deviation; Triiodothyronine, total; Ursus maritimus, mass
Tipo

Dataset