962 resultados para pixel
Resumo:
The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.
Resumo:
Neste artigo pretende-se compreender a aversão que designers (e arquitectos, inclusive) sentem verdadeiramente em relação “ao computador”. Se de um modo ele é um excelente parceiro aceite por todos, simultaneamente, é com muita apreensão que se programam currículos de disciplinas universitárias para que os alunos aprendam as características projectuais do design, desenvolvam capacidade criativa (inteligência no uso de recursos para a produção de conceitos ou objectos) usando o computador sistematicamente, ou seja, não apenas como uma ferramenta de desenho, mas também de projecto (design). Os automatismos continuam a ser os monstros de hoje, porém, como aqui defendemos, os computadores sempre projectaram sombra humana, são “apenas” máquinas hipermédias que recorrem a existentes tecnologias para, supostamente, criarem novas mais transparentes na relação homem-máquina.
Resumo:
An optically addressed read-write sensor based on two stacked p-i-n heterojunctions is analyzed. The device is a two terminal image sensing structure. The charge packets are injected optically into the p-i-n writer and confined at the illuminated regions changing locally the electrical field profile across the p-i-n reader. An optical scanner is used for charge readout. The design allows a continuous readout without the need for pixel-level patterning. The role of light pattern and scanner wavelengths on the readout parameters is analyzed. The optical-to-electrical transfer characteristics show high quantum efficiency, broad spectral response, and reciprocity between light and image signal. A numerical simulation supports the imaging process. A black and white image is acquired with a resolution around 20 mum showing the potentiality of these devices for imaging applications.
Resumo:
This paper presents a new driving scheme utilizing an in-pixel metal-insulator-semiconductor (MIS) photosensor for luminance control of active-matrix organic light-emitting diode (AMOLED) pixel. The proposed 3-TFT circuit is controlled by an external driver performing the signal readout, processing, and programming operations according to a luminance adjusting algorithm. To maintain the fabrication simplicity, the embedded MIS photosensor shares the same layer stack with pixel TFTs. Performance characteristics of the MIS structure with a nc-Si : H/a-Si : H bilayer absorber were measured and analyzed to prove the concept. The observed transient dark current is associated with charge trapping at the insulator-semiconductor interface that can be largely eliminated by adjusting the bias voltage during the refresh cycle. Other factors limiting the dynamic range and external quantum efficiency are also determined and verified using a small-signal model of the device. Experimental results demonstrate the feasibility of the MIS photosensor for the discussed driving scheme.
Resumo:
Dissertação de Mestrado em Gestão do Território, Área de Especialização em Detecção Remota e Sistemas de Informação Geográfica
Resumo:
O desenvolvimento das tecnologias associadas à Detecção Remota e aos Sistemas de Informação Geográfica encontram-se cada vez mais na ordem do dia. E, graças a este desenvolvimento de métodos para acelerar a produção de informação geográfica, assiste-se a um crescente aumento da resolução geométrica, espectral e radiométrica das imagens, e simultaneamente, ao aparecimento de novas aplicações com o intuito de facilitar o processamento e a análise de imagens através da melhoria de algoritmos para extracção de informação. Resultado disso são as imagens de alta resolução, provenientes do satélite WorldView 2 e o mais recente software Envi 5.0, utilizados neste estudo. O presente trabalho tem como principal objectivo desenvolver um projecto de cartografia de uso do solo para a cidade de Maputo, com recurso ao tratamento e à exploração de uma imagem de alta resolução, comparando as potencialidades e limitações dos resultados extraídos através da classificação “pixel a pixel”, através do algoritmo Máxima Verossimilhança, face às potencialidades e eventuais limitações da classificação orientada por objecto, através dos algoritmos K Nearest Neighbor (KNN) e Support Vector Machine (SVM), na extracção do mesmo número e tipo de classes de ocupação/uso do solo. Na classificação “pixel a pixel”, com a aplicação do algoritmo classificação Máxima Verosimilhança, foram ensaiados dois tipos de amostra: uma primeira constituída por 20 classes de ocupação/uso do solo, e uma segunda por 18 classes. Após a fase de experimentação, os resultados obtidos com a primeira amostra ficaram aquém das espectativas, pois observavam-se muitos erros de classificação. A segunda amostra formulada com base nestes erros de classificação e com o objectivo de os minimizar, permitiu obter um resultado próximo das espectativas idealizadas inicialmente, onde as classes de interesse coincidem com a realidade geográfica da cidade de Maputo. Na classificação orientada por objecto foram 4 as etapas metodológicas utilizadas: a atribuição do valor 5 para a segmentação e 90 para a fusão de segmentos; a selecção de 15 exemplos sobre os segmentos gerados para cada classe de interesse; bandas diferentemente distribuídas para o cálculo dos atributos espectrais e de textura; os atributos de forma Elongation e Form Factor e a aplicação dos algoritmos KNN e SVM. Confrontando as imagens resultantes das duas abordagens aplicadas, verificou-se que a qualidade do mapa produzido pela classificação “pixel a pixel” apresenta um nível de detalhe superior aos mapas resultantes da classificação orientada por objecto. Esta diferença de nível de detalhe é justificada pela unidade mínima do processamento de cada classificador: enquanto que na primeira abordagem a unidade mínima é o pixel, traduzinho uma maior detalhe, a segunda abordagem utiliza um conjunto de pixels, objecto, como unidade mínima despoletando situações de generalização. De um modo geral, a extracção da forma dos elementos e a distribuição das classes de interesse correspondem à realidade geográfica em si e, os resultados são bons face ao que é frequente em processamento semiautomático.
Resumo:
The impact of topography and mixed pixels on L-band radiometric observations over land needs to be quantified to improve the accuracy of soil moisture retrievals. For this purpose, a series of simulations has been performed with an improved version of the soil moisture and ocean salinity (SMOS) end-to-end performance simulator (SEPS). The brightness temperature generator of SEPS has been modified to include a 100-m-resolution land cover map and a 30-m-resolution digital elevation map of Catalonia (northeast of Spain). This high-resolution generator allows the assessment of the errors in soil moisture retrieval algorithms due to limited spatial resolution and provides a basis for the development of pixel disaggregation techniques. Variation of the local incidence angle, shadowing, and atmospheric effects (up- and downwelling radiation) due to surface topography has been analyzed. Results are compared to brightness temperatures that are computed under the assumption of an ellipsoidal Earth.
Resumo:
This paper describes the development and applications of a super-resolution method, known as Super-Resolution Variable-Pixel Linear Reconstruction. The algorithm works combining different lower resolution images in order to obtain, as a result, a higher resolution image. We show that it can make significant spatial resolution improvements to satellite images of the Earth¿s surface allowing recognition of objects with size approaching the limiting spatial resolution of the lower resolution images. The algorithm is based on the Variable-Pixel Linear Reconstruction algorithm developed by Fruchter and Hook, a well-known method in astronomy but never used for Earth remote sensing purposes. The algorithm preserves photometry, can weight input images according to the statistical significance of each pixel, and removes the effect of geometric distortion on both image shape and photometry. In this paper, we describe its development for remote sensing purposes, show the usefulness of the algorithm working with images as different to the astronomical images as the remote sensing ones, and show applications to: 1) a set of simulated multispectral images obtained from a real Quickbird image; and 2) a set of multispectral real Landsat Enhanced Thematic Mapper Plus (ETM+) images. These examples show that the algorithm provides a substantial improvement in limiting spatial resolution for both simulated and real data sets without significantly altering the multispectral content of the input low-resolution images, without amplifying the noise, and with very few artifacts.
Resumo:
The gated operation is proposed as an effective method to reduce the noise in pixel detectors based on Geiger mode avalanche photodiodes. A prototype with the sensor and the front-end electronics monolithically integrated has been fabricated with a conventional HV-CMOS process. Experimental results demonstrate the increase of the dynamic range of the sensor by applying this technique.
Resumo:
Peer-reviewed
Resumo:
In this paper, we present view-dependent information theory quality measures for pixel sampling and scene discretization in flatland. The measures are based on a definition for the mutual information of a line, and have a purely geometrical basis. Several algorithms exploiting them are presented and compare well with an existing one based on depth differences
Resumo:
The high sensitivity and excellent timing accuracy of Geiger mode avalanche photodiodes makes them ideal sensors as pixel detectors for particle tracking in high energy physics experiments to be performed in future linear colliders. Nevertheless, it is well known that these sensors suffer from dark counts and afterpulsing noise, which induce false hits (indistinguishable from event detection) as well as an increase of the necessary area of the readout system. In this work, we present a comparison between APDs fabricated in a high voltage 0.35 µm and a high integration 0.13 µm commercially available CMOS technologies that has been performed to determine which of them best fits the particle collider requirements. In addition, a readout circuit that allows low noise operation is introduced. Experimental characterization of the proposed pixel is also presented in this work.
Resumo:
This Master’s Thesis is dedicated to the simulation of new p-type pixel strip detector with enhanced multiplication effect. It is done for high-energy physics experiments upgrade such as Super Large Hadron Collider especially for Compact Muon Solenoid particle track silicon detectors. These detectors are used in very harsh radiation environment and should have good radiation hardness. The device engineering technology for developing more radiation hard particle detectors is used for minimizing the radiation degradation. New detector structure with enhanced multiplication effect is proposed in this work. There are studies of electric field and electric charge distribution of conventional and new p-type detector under reverse voltage bias and irradiation. Finally, the dependence of the anode current from the applied cathode reverse voltage bias under irradiation is obtained in this Thesis. For simulation Silvaco Technology Computer Aided Design software was used. Athena was used for creation of doping profiles and device structures and Atlas was used for getting electrical characteristics of the studied devices. The program codes for this software are represented in Appendixes.
Resumo:
The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99% with half the output rate as a bus-based system. The network-based solution avoids “broken” columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of > 10% to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling (TLM) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of > 10 in run-time is observed using these techniques compared to register transfer level (RTL) design technique. Reduction of 50% for lines-of-code (LoC) for the high-level models compared to the RTL description has been achieved. Two architectures are then demonstrated in two hybrid pixel readout chips. The first chip, Timepix3 has been designed for the Medipix3 collaboration. According to the measurements, it consumes < 1 W/cm^2. It also delivers up to 40 Mhits/s/cm^2 with 10-bit time-over-threshold (ToT) and 18-bit time-of-arrival (ToA) of 1.5625 ns. The chip uses a token-arbitrated, asynchronous two-phase handshake column bus for internal data transfer. It has also been successfully used in a multi-chip particle tracking telescope. The second chip, VeloPix, is a readout chip being designed for the upgrade of Vertex Locator (VELO) of the LHCb experiment at CERN. Based on the simulations, it consumes < 1.5 W/cm^2 while delivering up to 320 Mpackets/s/cm^2, each packet containing up to 8 pixels. VeloPix uses a node-based data fabric for achieving throughput of 13.3 Mpackets/s from the column to the EoC. By combining Monte Carlo physics data with high-level simulations, it has been demonstrated that the architecture meets requirements of the VELO (260 Mpackets/s/cm^2 with efficiency of 99%).