911 resultados para pigment epithelium-derived factor
Resumo:
Pigment epithelium-derived factor (PEDF) is acknowledged to be a non-inhibitory member of the serine protease inhibitor (serpin) superfamily, with antiangiogenesis, and neuroprotective and immumoregulatory function, mainly in the tissues of nervous system. Here, A PEDF gene homolog, Paralichthys olivaceus PEDF (PoPEDF), was isolated from flounder embryonic cells (FEC) treated with UV-inactivated Grass carp hemorrhage virus (GCHV) and subsequently identified as a differentially expressed gene. The full length of PoPEDF cDNA is 1803 bp with an open reading frame of 1212 bp encoding a 403-amino-acid protein. This deduced protein contains an N-terminal signal peptide, a glycosylation site, a consensus serpin motif, and a 34-mer and a 44-mer fragment, all of which are very conserved in the PEDF family. PoPEDF gene exhibits a conserved exon-intron arrangement with 8 exons and 7 introns. This conserved evolutionary relationship was further confirmed by a phylogenetic analysis, where fish PEDFs and mammalian members formed a well-supported clade. Constitutive expression of PoPEDF was widely detected in many tissues. In response to UV-inactivated GCHV or poly(I:C), PEDF mRNA was upregulated in FEC cells with time. This is the first report on the transcriptional induction of PEDF in virally infected cells. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Oxidized and/or glycated low-density lipoprotein (LDL) may mediate capillary injury in diabetic retinopathy. The mechanisms may involve pro-inflammatory and pro-oxidant effects on retinal capillary pericytes. In this study, these effects, and the protective effects of pigment epithelium-derived factor (PEDF), were defined in a primary human pericyte model. Human retinal pericytes were exposed to 100 microg/ml native LDL (N-LDL) or heavily oxidized glycated LDL (HOG-LDL) with or without PEDF at 10-160 nM for 24 h. To assess pro-inflammatory effects, monocyte chemoattractant protein-1 (MCP-1) secretion was measured by ELISA, and nuclear factor-kappaB (NF-kappaB) activation was detected by immunocytochemistry. Oxidative stress was determined by measuring intracellular reactive oxygen species (ROS), peroxynitrite (ONOO(-)) formation, inducible nitric oxide synthase (iNOS) expression, and nitric oxide (NO) production. The results showed that MCP-1 was significantly increased by HOG-LDL, and the effect was attenuated by PEDF in a dose-dependent manner. PEDF also attenuated the HOG-LDL-induced NF-kappaB activation, suggesting that the inhibitory effect of PEDF on MCP-1 was at least partially through the blockade of NF-kappaB activation. Further studies demonstrated that HOG-LDL, but not N-LDL, significantly increased ONOO(-) formation, NO production, and iNOS expression. These changes were also alleviated by PEDF. Moreover, PEDF significantly ameliorated HOG-LDL-induced ROS generation through up-regulation of superoxide dismutase 1 expression. Taken together, these results demonstrate pro-inflammatory and pro-oxidant effects of HOG-LDL on retinal pericytes, which were effectively ameliorated by PEDF. Suppressing MCP-1 production and thus inhibiting macrophage recruitment may represent a new mechanism for the salutary effect of PEDF in diabetic retinopathy and warrants more studies in future.
Resumo:
To determine in Type 1 diabetes patients if levels of pigment epithelium-derived factor (PEDF), an anti-angiogenic, anti-inflammatory and antioxidant factor, are increased in individuals with complications and positively related to vascular and renal dysfunction, body mass index, glycated haemoglobin, lipids, inflammation and oxidative stress.
Resumo:
Serum PEDF levels (mean (S.D.)) were increased in 96 Type 2 diabetic vs. 54 non-diabetic subjects; 5.3 (2.8) vs. 3.2 (2.0)mug/ml, p
Resumo:
Aim: To determine if serum pigment epithelium-derived factor (PEDF) levels in Type 2 diabetes are related to vascular risk factors and renal function. Methods: PEDF was quantified by ELISA in a cross-sectional study of 857 male Veterans Affairs Diabetes Trial (VADT) subjects, and associations with cardiovascular risk factors and renal function were determined. In a subset (n = 246) in whom serum was obtained early in the VADT (2.0 ± 0.3 years post-randomization), PEDF was related to longitudinal changes in renal function over 3.1 years. Results: Cross-sectional study: In multivariate regression models, PEDF was positively associated with serum triglycerides, waist-to-hip ratio, serum creatinine, use of ACE inhibitors or angiotensin receptor blockers, and use of lipid-lowering agents; it was negatively associated with HDL-C (all p < 0.05). Longitudinal study: PEDF was not associated with changes in renal function over 3.1 years (p > 0.09). Conclusions: Serum PEDF in Type 2 diabetic men was cross-sectionally associated with dyslipidemia, body habitus, use of common drugs for blood pressure and dyslipidemia, and indices of renal function; however, PEDF was not associated with renal decline over 3.1 years.
Resumo:
Aberrant blood vessel growth in the retina that underlies the pathology of proliferative diabetic retinopathy and retinopathy of prematurity is the result of the ischemia-driven disruption of the normally antiangiogenic environment of the retina. In this study, we show that a potent inhibitor of angiogenesis found naturally in the normal eye, pigment epithelium-derived growth factor (PEDF), inhibits such aberrant blood vessel growth in a murine model of ischemia-induced retinopathy. Inhibition was proportional to dose and systemic delivery of recombinant protein at daily doses as low as 2.2 mg/kg could prevent aberrant endothelial cells from crossing the inner limiting membrane. PEDF appeared to inhibit angiogenesis by causing apoptosis of activated endothelial cells, because it induced apoptosis in cultured endothelial cells and an 8-fold increase in apoptotic endothelial cells could be detected in situ when the ischemic retinas of PEDF-treated animals were compared with vehicle-treated controls. The ability of low doses of PEDF to curtail aberrant growth of ocular endothelial cells without overt harm to retinal morphology suggests that this natural protein may be beneficial in the treatment of a variety of retinal vasculopathies.
Resumo:
PEDF 蛋白(Pigment epithelium-derived factor)又名“色素上皮源因子”或 “色素上皮衍生因子”,为一个多功能性分泌糖蛋白,前人研究表明PEDF 蛋白 具有神经保护性、免疫调节、抑制新生血管生成以及抑制肿瘤恶化等多种功能。 PEDF-R 是PEDF 的受体, 属于PNPLA2 ( Patatin-like phopholipase domain-containing 2 family)蛋白家族的一个新成员,PEDF 蛋白与其结合后会激 活PEDF-R 的磷脂酶A2 活性。本研究中,我们描述了非洲爪蟾PEDF 和PEDF-R 基因的表达图式及其在胚胎发育中的可能功能。RT-PCR 结果显示PEDF 是非母 源性表达,而PEDF-R 则是母源性表达的。原位杂交实验表明它们均在神经系统 中特异表达,但PEDF-R 的表达区域更加广泛,在鳃弓、眼泡和耳泡中也有表达。 通过mRNA 过表达和Morpholino(MO)阻断蛋白合成等手段发现,PEDF 功能获 得和功能缺失后胚胎几乎不受影响。然而PEDF-R 过表达后胚胎向注射一侧弯 曲,TUNEL 凋亡检测实验发现这些胚胎在注射一侧发生了凋亡。这两个基因神 经表达的特异性表明它们可能在早期神经发育中有重要功能。TUNEL 结果暗示 着PEDF-R 可能是一个与凋亡信号通路相关的受体。PEDF 功能获得和缺失并未 导致胚胎明显的表型,这表明PEDF 在非洲爪蟾中可能还存在其他的受体来行使 与PEDF-R 不同功能的途径。 果蝇的vestigial 基因编码一个转录辅助因子,在果蝇中只有一个成员,即 vestigial(vg)基因。在脊椎动物中有四个vestigial 同源基因,即vestigial-like 1,2,3,4_(vgl-1,2,3,4)。Vestigial 蛋白能作为辅助因子与果蝇中的Scalloped(Sd)蛋白 或者哺乳动物中的TEF 蛋白结合成复合体,通过Sd/TEF 蛋白的TEA/ATTS 结构 域与DNA 结合,从而调节下游基因的转录。本研究中,我们克隆了非洲爪蟾 vestigial-like 家族的四个成员,并对其在爪蟾胚胎发育过程中的表达进行研究。 RT-PCR 显示vgl-2 和vgl-3 是合子型表达的,vgl-1、vgl-4 则是母源性表达。原位 杂交显示:vgl-1 主要在神经管背部、耳泡和眼泡中表达;vgl-2 则是在肌肉、第 一二鳃弓、脊索中特异表达;vgl-3 神经胚时期在后脑有强的表达信号,从神经 胚后期到尾芽期后脑部位的表达几乎消失了,而在胚胎的头部以及神经管中开始 有微弱的表达;vgl-4 的表达较广泛,在神经管、眼泡、耳泡、肌肉以及脊索中 均有表达。在爪蟾中这四个成员的表达图式各不相同,提示它们有可能与其行使 组织特异性基因调控的功能相关,上述结果将有助于对vestigial-like 家族基因在 胚胎发育中的功能研究。
Resumo:
PEDF 蛋白(Pigment epithelium-derived factor)又名“色素上皮源因子”或 “色素上皮衍生因子”,为一个多功能性分泌糖蛋白,前人研究表明PEDF 蛋白 具有神经保护性、免疫调节、抑制新生血管生成以及抑制肿瘤恶化等多种功能。 PEDF-R 是PEDF 的受体, 属于PNPLA2 ( Patatin-like phopholipase domain-containing 2 family)蛋白家族的一个新成员,PEDF 蛋白与其结合后会激 活PEDF-R 的磷脂酶A2 活性。本研究中,我们描述了非洲爪蟾PEDF 和PEDF-R 基因的表达图式及其在胚胎发育中的可能功能。RT-PCR 结果显示PEDF 是非母 源性表达,而PEDF-R 则是母源性表达的。原位杂交实验表明它们均在神经系统 中特异表达,但PEDF-R 的表达区域更加广泛,在鳃弓、眼泡和耳泡中也有表达。 通过mRNA 过表达和Morpholino(MO)阻断蛋白合成等手段发现,PEDF 功能获 得和功能缺失后胚胎几乎不受影响。然而PEDF-R 过表达后胚胎向注射一侧弯 曲,TUNEL 凋亡检测实验发现这些胚胎在注射一侧发生了凋亡。这两个基因神 经表达的特异性表明它们可能在早期神经发育中有重要功能。TUNEL 结果暗示 着PEDF-R 可能是一个与凋亡信号通路相关的受体。PEDF 功能获得和缺失并未 导致胚胎明显的表型,这表明PEDF 在非洲爪蟾中可能还存在其他的受体来行使 与PEDF-R 不同功能的途径。 果蝇的vestigial 基因编码一个转录辅助因子,在果蝇中只有一个成员,即 vestigial(vg)基因。在脊椎动物中有四个vestigial 同源基因,即vestigial-like 非洲爪蟾早期胚胎发育中PEDF 和PEDF-R 的功能以及vestigial-like 家族表达图式的研究 2 1,2,3,4_(vgl-1,2,3,4)。Vestigial 蛋白能作为辅助因子与果蝇中的Scalloped(Sd)蛋白 或者哺乳动物中的TEF 蛋白结合成复合体,通过Sd/TEF 蛋白的TEA/ATTS 结构 域与DNA 结合,从而调节下游基因的转录。本研究中,我们克隆了非洲爪蟾 vestigial-like 家族的四个成员,并对其在爪蟾胚胎发育过程中的表达进行研究。 RT-PCR 显示vgl-2 和vgl-3 是合子型表达的,vgl-1、vgl-4 则是母源性表达。原位 杂交显示:vgl-1 主要在神经管背部、耳泡和眼泡中表达;vgl-2 则是在肌肉、第 一二鳃弓、脊索中特异表达;vgl-3 神经胚时期在后脑有强的表达信号,从神经 胚后期到尾芽期后脑部位的表达几乎消失了,而在胚胎的头部以及神经管中开始 有微弱的表达;vgl-4 的表达较广泛,在神经管、眼泡、耳泡、肌肉以及脊索中 均有表达。在爪蟾中这四个成员的表达图式各不相同,提示它们有可能与其行使 组织特异性基因调控的功能相关,上述结果将有助于对vestigial-like 家族基因在 胚胎发育中的功能研究。
Resumo:
BACKGROUND: Offspring of women with diabetes mellitus (DM) during pregnancy have a risk of developing metabolic disease in adulthood greater than that conferred by genetics alone. The mechanisms responsible are unknown, but likely involve fetal exposure to the in utero milieu, including glucose and circulating adipokines. The purpose of this study was to assess the impact of maternal DM on fetal adipokines and anthropometry in infants of Hispanic and Native American women.
METHODS: We conducted a prospective study of offspring of mothers with normoglycemia (Con-O; n = 79) or type 2 or gestational DM (DM-O; n = 45) pregnancies. Infant anthropometrics were measured at birth and 1-month of age. Cord leptin, high-molecular-weight adiponectin (HMWA), pigment epithelium-derived factor (PEDF) and C-peptide were measured by ELISA. Differences between groups were assessed using the Generalized Linear Model framework. Correlations were calculated as standardized regression coefficients and adjusted for significant covariates.
RESULTS: DM-O were heavier at birth than Con-O (3.7 ± 0.6 vs. 3.4 ± 0.4 kg, p = 0.024), but sum of skinfolds (SSF) were not different. At 1-month, there was no difference in weight, SSF or % body fat or postnatal growth between groups. Leptin was higher in DM-O (20.1 ± 14.9 vs. 9.5 ± 9.9 ng/ml in Con-O, p < 0.0001). Leptin was positively associated with birth weight (p = 0.0007) and SSF (p = 0.002) in Con-O and with maternal hemoglobin A1c in both groups (Con-O, p = 0.023; DM-O, p = 0.006). PEDF was positively associated with birth weight in all infants (p = 0.004). Leptin was positively associated with PEDF in both groups, with a stronger correlation in DM-O (p = 0.009). At 1-month, HMWA was positively associated with body weight (p = 0.004), SSF (p = 0.025) and % body fat (p = 0.004) across the cohort.
CONCLUSIONS: Maternal DM results in fetal hyperleptinemia independent of adiposity. HMWA appears to influence postnatal growth. Thus, in utero exposure to DM imparts hormonal differences on infants even without aberrant growth.
Resumo:
PURPOSE. Limited mechanistic understanding of diabetic retinopathy (DR) has hindered therapeutic advances. Berberine, an isoquinolone alkaloid, has shown favorable effects on glucose and lipid metabolism in animal and human studies, but effects on DR are unknown. We previously demonstrated intraretinal extravasation and modification of LDL in human diabetes, and toxicity of modified LDL to human retinal M¨uller cells. We now explore pathogenic effects of modified LDL on M¨uller cells, and the efficacy of berberine in mitigating this cytotoxicity. METHODS. Confluent human M¨uller cells were exposed to in vitro–modified ‘highly oxidized, glycated (HOG-) LDL versus native-LDL (N-LDL; 200 mg protein/L) for 6 or 24 hours, with/ without pretreatment with berberine (5 lM, 1 hour) and/or the adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, Compound C (5 lM, 1 hour). Using techniques including Western blots, reactive oxygen species (ROS) detection assay, and quantitative real-time PCR, the following outcomes were assessed: cell viability (CCK-8 assay), autophagy (LC3, Beclin-1, ATG-5), apoptosis (cleaved caspase 3, cleaved poly-ADP ribose polymerase), oxidative stress (ROS, nuclear factor erythroid 2-related factor 2, glutathione peroxidase 1, NADPH oxidase 4), angiogenesis (VEGF, pigment epithelium-derived factor), inflammation (inducible nitric oxide synthase, intercellular adhesion molecule 1, IL-6, IL-8, TNF-a), and glial cell activation (glial fibrillary acidic protein). RESULTS. Native-LDL had no effect on cultured human M¨uller cells, but HOG-LDL exhibited marked toxicity, significantly decreasing viability and inducing autophagy, apoptosis, oxidative stress, expression of angiogenic factors, inflammation, and glial cell activation. Berberine attenuated all the effects of HOG-LDL (all P < 0.05), and its effects were mitigated by AMPK inhibition (P < 0.05). CONCLUSIONS. Berberine inhibits modified LDL-induced M¨uller cell injury by activating the AMPK pathway, and merits further study as an agent for preventing and/or treating DR.
Resumo:
Dissertação de mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015
Resumo:
Type 2 diabetes mellitus (T2DM) increases in prevalence in the elderly. There is evidence for significant muscle loss and accelerated cognitive impairment in older adults with T2DM; these comorbidities are critical features of frailty. In the early stages of T2DM, insulin sensitivity can be improved by a “healthy” diet. Management of insulin resistance by diet in people over 65 years of age should be carefully re-evaluated because of the risk for falling due to hypoglycaemia. To date, an optimal dietary programme for older adults with insulin resistance and T2DM has not been described. The use of biomarkers to identify those at risk for T2DM will enable clinicians to offer early dietary advice that will delay onset of disease and of frailty. Here we have used an in silico literature search for putative novel biomarkers of T2DM risk and frailty. We suggest that plasma bilirubin, plasma, urinary DPP4-positive microparticles and plasma pigment epithelium-derived factor merit further investigation as predictive biomarkers for T2DM and frailty risk in older adults. Bilirubin is screened routinely in clinical practice. Measurement of specific microparticle frequency in urine is less invasive than a blood sample so is a good choice for biomonitoring. Future studies should investigate whether early dietary changes, such as increased intake of whey protein and micronutrients that improve muscle function and insulin sensitivity, affect biomarkers and can reduce the longer term complication of frailty in people at risk for T2DM.
Multifactorial approach to non-viral gene therapy: development of an efficient system for the retina
Resumo:
Tese de Doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016
Resumo:
PURPOSE: To characterize chemoattractants expressed by the retinal pigment epithelium (RPE) after sodium iodate (NaIO3)-induced damage and to investigate whether ocular-committed stem cells preexist in the bone marrow (BM) and migrate in response to the chemoattractive signals expressed by the damaged RPE. METHODS: C57/BL6 mice were treated with a single intravenous injection of NaIO3 (50 mg/kg) to create RPE damage. At different time points real-time RT-PCR, ELISA, and immunohistochemistry were used to identify chemoattractants secreted in the subretinal space. Conditioned medium from NaIO3-treated mouse RPE was used in an in vitro assay to assess chemotaxis of stem cell antigen-1 positive (Sca-1+) BM mononuclear cells (MNCs). The expression of early ocular markers (MITF, Pax-6, Six-3, Otx) in migrated cells and in MNCs isolated from granulocyte colony-stimulating factor (G-CSF) and Flt3 ligand (FL)-mobilized and nonmobilized peripheral blood (PB) was analyzed by real-time RT-PCR. RESULTS: mRNA for stromal cell-derived factor-1 (SDF-1), C3, hepatocyte growth factor (HGF), and leukemia inhibitory factor (LIF) was significantly increased, and higher SDF-1 and C3 protein secretion from the RPE was found after NaIO3 treatment. A higher number of BMMNCs expressing early ocular markers migrated to conditioned medium from damaged retina. There was also increased expression of early ocular markers in PBMNCs after mobilization. CONCLUSIONS: Damaged RPE secretes cytokines that have been shown to serve as chemoattractants for BM-derived stem cells (BMSCs). Retina-committed stem cells appear to reside in the BM and can be mobilized into the PB by G-CSF and FL. These stem cells may have the potential to serve as an endogenous source for tissue regeneration after RPE damage.
Resumo:
PURPOSE: The aim of the present study was to investigate whether bone marrow-derived cells (BMCs) can be induced to express retinal pigment epithelial (RPE) cell markers in vitro and can home to the site of RPE damage after mobilization and express markers of RPE lineage in vivo. METHODS: Adult RPE cells were cocultured with green fluorescence protein (GFP)-labeled stem cell antigen-1 positive (Sca-1(+)) BMCs for 1, 2, and 3 weeks. Cell morphology and expression of RPE-specific markers and markers for other retinal cell types were studied. Using an animal model of sodium iodate (NaIO(3))-induced RPE degeneration, BMCs were mobilized into the peripheral circulation by granulocyte-colony stimulating factor, flt3 ligand, or both. Immunocytochemistry was used to identify and characterize BMCs in the subretinal space in C57BL/6 wild-type (wt) mice and GFP chimeric mice. RESULTS: In vitro, BMCs changed from round to flattened, polygonal cells and expressed cytokeratin, RPE65, and microphthalmia transcription factor (MITF) when cocultured in direct cell-cell contact with RPE. In vivo, BMCs were identified in the subretinal space as Sca-1(+) or c-kit(+) cells. They were also double labeled for GFP and RPE65 or MITF. These cells formed a monolayer on the Bruch membrane in focal areas of RPE damage. CONCLUSIONS: Thus, it appears that BMCs, when mobilized into the peripheral circulation, can home to focal areas of RPE damage and express cell markers of RPE lineage. The use of endogenous BMCs to replace damaged retinal tissue opens new possibilities for cell replacement therapy in ophthalmology.