979 resultados para pi-pi interactions
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Two binuclear cyclometallated compounds [Pd(C-2,N-dmba)(mu-N-3)](2) (1) and [Pd-2(C-2,N-dmba)(2)(mu-N-3)(mu-Cl)] (2) (dmba = N,N-dimethylbenzylarnine) have been synthesized and characterized by elemental 3 analysis, IR and NMR spectroscopies and single crystal X-ray diffraction crystallography. The ability of CH3 groups to form C(sp(3))-H...pi hydrogen bonds with phenyl rings is responsible for the molecular self-assembly within the crystals of 1 and 2. Compound 1 crystallizes as one-dimensional supramolecular chains whereas the crystal packing of 2 consists of a herringbone of sandwiches composed by two inversely related [Pd-2(C-2,N-dmba)(2)(mu-N-3)(mu-Cl)] molecules. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The cation-pi interaction is an important, general force for molecular recognition in biological receptors. Through the sidechains of aromatic amino acids, novel binding sites for cationic ligands such as acetylcholine can be constructed. We report here a number of calculations on prototypical cation-pi systems, emphasizing structures of relevance to biological receptors and prototypical heterocycles of the type often of importance in medicinal chemistry. Trends in the data can be rationalized using a relatively simple model that emphasizes the electrostatic component of the cation-pi interaction. In particular, plots of the electrostatic potential surfaces of the relevant aromatics provide useful guidelines for predicting cation-pi interactions in new systems.
Resumo:
A Cu-II complex of protonated 4,4'-bipyridine (Hbyp) and 2-picolinate (pic), [Cu-2(pic)(3)(Hbyp)(H2O)(ClO4)(2)], has been synthesised and characterised by single-crystal X-ray analysis. The structure consists of two copper atoms that have different environments, bridged by a carboxylate group. The equatorial plane is formed by the two bidentate picolinate groups in one Cu-II, and one picolinate, one monodentate 4,4'-bipyridyl ligand and a water molecule in the other. Each copper atom is also weakly bonded to a perchlorate anion in an axial position. One of the coordinated perchlorate groups displays anion-pi interaction with the coordinated pyridine ring. The noncoordinated carboxylate oxygen is involved in lone-pair (l.p.)-pi interaction with the protonated pyridine ring. In addition there are pi-pi and H-bonding interactions in the structure. Bader's theory of "atoms in molecules" (AIM) is used to characterise the anion-pi and l.p.-pi interactions observed in the solid state. A high-level ab initio study (RI-MP2/aug-cc-pVTZ level of theory) has been performed to analyse the anion-pi binding affinity of the pyridine ring when it is coordinated to a transition metal and also when the other pyridine ring of the 4,4'-bipyridine moiety is protonated. Theoretical investigations support the experimental findings of an intricate network of intermolecular interactions, which is characterised in the studied complex, and also indicate that protonation as well as coordination to the transition metal have important roles in influencing the pi-binding properties of the aromatic ring. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
In this article were studied two xanthone derivatives known as 1,5-dihydroxy-8-methoxyxanthone (I) and 1,3,7-trihydroxy-8-methoxyxanthone (II), which show one water molecule into their crystal structures. In xanthone I, there are water wires contributing to build up channel-like cavities along the c axis, whereas in xanthone II the water is surrounded by three xanthone molecules forming a cage-type structure. The geometries of I and II were optimized using the density functional theory method with B3LYP functional, and the results were compared with crystal structure. Both theoretical and experimental investigations reveal a concordance between structural parameters, with the xanthone core presenting an almost flat conformation and substituents adopting the more stable orientations. In the two compounds, the hydroxyl group linked at position 1 is involved in a resonance-assisted hydrogen bond with the carbonyl group. Besides, the supramolecular arrangement of the host/guest systems are stabilized mainly by classical intermolecular hydrogen bonds (O-H center dot center dot center dot O) involving xanthone-to-water and xanthone-to-xanthone. In addition, C-H center dot center dot center dot O weak hydrogen bonds, as well as pi-pi interactions play an important role to stabilize the crystal self-assembly of xanthones I and II. The results reported here underline the role of inclusion of water molecules and their different arrangement into the crystal structure of two xanthone host/guest systems.
Resumo:
This work deals with the synthesis, spectroscopic and structural investigation of pyrazolyl complexes of the type trans-[M(NCS)(2)(HPz)(4)] {M=Co (1), Ni (2); HPz=pyrazole}. Single crystal X-ray studies on 1 and 2 reveal the formation of similar supramolecular arrangements derived from self-assembly of monomers linked together through intermolecular N-H center dot center dot center dot SCN hydrogen bonds, C-H center dot center dot center dot pi interactions and pi-pi stacking. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two mononuclear complexes of manganese(II), [Mn(OCN)(2)(phen)(2)] 1 and [Mn(NCO)(2)(bpy)(2)] 2 [1,10-phenanthroline (phen); 2,2'-bipyridine (bpy)], have been synthesized and characterized by single crystal X-ray analysis, infra-red spectroscopy and magnetic studies. The coordination structure of complex 2 is already reported. The cyanate anions are pendent in both the complexes. In 1, cyanate anion links manganese(II) through O-atom, whereas in 2 it coordinates through N-atom. The mononuclear fragments of 1 are built up to a supramolecular lamellar 3D architecture by pi-pi interactions only. On the other hand, mononuclear fragments of 2 are assembled to a 2D supramolecular brick-wall architecture by C-H-... pi interactions.
Resumo:
Four new cadmium(II) complexes [Cd-2(bz)(4)(H2O)(4)(mu 2-hmt)]center dot Hbz center dot H2O (1), [Cd-3(bz)(6)(H2O)(6)(mu 2-hmt)(2)]center dot 6H(2)O (2), [Cd(pa)(2)(H2O)(mu(2)-hmt)](n) (3), and {[Cd-3(ac)(6)(H2O)(3)(mu(3)-hmt)(2)]center dot 6H(2)O}(n) (4) with hexamine (hmt) and monocarboxylate ions, benzoate (bz), phenylacetate (pa), or acetate (ac) have been synthesized and characterized structurally. Structure determinations reveal that 1 is dinuclear, 2 is trinuclear, 3 is a one-dimensional (1D) infinite chain, and 4 is a two-dimensional (2D) polymer with fused hexagonal rings consisting of Cd-II and hmt. All the Cd-II atoms in the four complexes (except one CdII in 2) possess seven-coordinate pentagonal bipyramidal geometry with the various chelating bidentate carboxylate groups in equatorial sites. One of the CdII ions in 2, a complex that contains two monodentate carboxylates is in a distorted octahedral environment. The bridging mode of hmt is mu 2- in complexes 1-3 but is mu 3- in complex 4. In all complexes, there are significant numbers of H-bonds, C-H/pi, and pi-pi interactions which play crucial roles in forming the supramolecular networks. The importance of the noncovalent interactions in terms of energies and geometries has been analyzed using high level ab initio calculations. The effect of the cadmium coordinated to hmt on the energetic features of the C-H/pi interaction is analyzed. Finally, the interplay between C-H/pi and pi-pi interactions observed in the crystal structure of 3 is also studied.
Resumo:
The pyrrolidine-2,5-dione ring in the title compound, C(15)H(15)NO(6), is in a twisted conformation with the acetyl C atoms projecting to opposite sides of the ring. The acetyl groups lie to opposite sides of the five-membered ring. The benzene ring is roughly perpendicular to the heterocyclic ring, forming a dihedral angle of 76.57 (14)degrees with it. In the crystal, molecules are connected through a network of C-H center dot center dot center dot O and C-H center dot center dot center dot pi interactions.
Resumo:
The tellurium atom in the title bis-ethynyl telluride, Te(C(9)H(7))(2) or C(18)H(14)Te, is located on a crystallographic twofold axis, the C-Te-C angle being 92.23 (15)degrees. The dihedral angle between the rings is 87.27 (7)degrees. In the crystal structure, molecules are connected in chains parallel to the b axis and mediated by C-H center dot center dot center dot pi interactions.
Resumo:
The tetrahydropyrimidinone ring in the title compound, C(20)H(20)N(2)O(2), is in a half-boat conformation with the N-C-N C atom 0.580 (2) angstrom out of the plane defined by the remaining five atoms. In the crystal structure, molecules are connected into centrosymmetric dimers via N-H center dot center dot center dot O interactions. The dimeric aggregates are linked into supramolecular chains along the a axis via C-H center dot center dot center dot pi interactions.
Resumo:
The antimicrobial peptide indolicidin (IND) and the mutant CP10A in hydrated micelles were studied using molecular dynamics simulations in order to observe whether the molecular dynamics and experimental data could be sufficiently correlated and a detailed description of the interaction of the antimicrobial peptides with a model of the membrane provided by a hydrated micelle system could be obtained. In agreement with the experiments, the simulations showed that the peptides are located near the surface of the micelles. Peptide insertions agree with available experimental data, showing deeper insertion of the mutant compared with the peptide IND. Major insertion into the hydrophobic core of the micelle by all tryptophan and mutated residues of CP10A in relation to IND was observed. The charged residues of the terminus regions of both peptides present similar behavior, indicating that the major differences in the interactions with the micelles of the peptides IND and CP10A occur in the case of the hydrophobic residues.
Resumo:
Ticlopidine hydrochloride (TICLID (R)) is a platelet antiaggregating agent whose use as a potent antithrombotic pharmaceutical ingredient is widespread, even though this drug has not been well characterized in the solid state. Only the crystal phase used for drug product manufacturing is known. Here, a new polymorph of ticlopidine hydrochloride was discovered and its structure was determined. While the antecedent polymorph crystallizes in the triclinic space group P (1) over bar, the new crystal phase was solved in the monoclinic space group P2(1)/c. Both polymorphs crystallize as racemic mixtures of enantiomeric (ticlopidine)(+) cations. Detailed geometrical and packing comparisons between the crystal structures of the two polymorphs have allowed us to understand how different supramolecular architectures are assembled. It was feasible to conclude that the main difference between the two polymorphs is a rotation of about 120 degrees on the bridging bond between the thienopyridine and o-chlorobenzyl moieties. The differential o-chlorobenzyl conformation is related to changeable patterns of weak intermolecular contacts involving this moiety, such as edge-to-face Cl center dot center dot center dot pi and C-H center dot center dot center dot pi interactions in the new polymorph and face-to-face pi center dot center dot center dot pi contacts in the triclinic crystal phase, leading to a symmetry increase in the ticlopidine hydrochloride solid state form described for the first time in this study. Other conformational features are slightly different between the two polymorphs, such as the thienopyridine puckerings and the o-chlorophenyl orientations. These conformational characteristics were also correlated to the crystal packing patterns.
Resumo:
In the title compound, C(16)H(12)N(2)O(2)S, the carbonylthiourea group forms dihedral angles of 75.4 (1) and 13.1 (2)degrees, respectively, with the naphthalene ring system and furan ring. The molecule adopts a trans-cis configuration with respect to the positions of the furoyl and naphthyl groups relative to the S atom across the thiourea C-N bonds. This geometry is stabilized by an N-H center dot center dot center dot center dot O intramolecular hydrogen bond. In the crystal structure, molecules are linked by N-H center dot center dot center dot S hydrogen bonds, forming centrosymmetric dimers which are interlinked through C-H center dot center dot center dot pi interactions.