267 resultados para photoemission


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory for time-resolved, pump-probe, photoemission spectroscopy and other pump-probe experiments is developed. The formal development is completely general, incorporating all of the nonequilibrium effects of the pump pulse and the finite time width of the probe pulse, and including possibilities for taking into account band structure and matrix element effects, surface states, and the interaction of the photoexcited electrons with the system leading to corrections to the sudden approximation. We also illustrate the effects of windowing that arise from the finite width of the probe pulse in a simple model system by assuming the quasiequilibrium approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we theoretically examine recent pump/probe photoemission experiments on the strongly correlated charge-density-wave insulator TaS2.We describe the general nonequilibrium many-body formulation of time-resolved photoemission in the sudden approximation, and then solve the problem using dynamical mean-field theory with the numerical renormalization group and a bare density of states calculated from density functional theory including the charge-density-wave distortion of the ion cores and spin-orbit coupling. We find a number of interesting results: (i) the bare band structure actually has more dispersion in the perpendicular direction than in the two-dimensional planes; (ii) the DMFT approach can produce upper and lower Hubbard bands that resemble those in the experiment, but the upper bands will overlap in energy with other higher energy bands; (iii) the effect of the finite width of the probe pulse is minimal on the shape of the photoemission spectra; and (iv) the quasiequilibrium approximation does not fully describe the behavior in this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoemission spectra of YBa2Cu3O7-δ in the normal and superconducting states provide direct evidence for dimerization of oxygen below Tc. Cu2+ is found to reduce to Cu1+ concomitantly. These changes may be of vital importance to the mechanism of high-temperature superconductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The valence state of Yb in some of its intermetallics, YbNi2Ge2, YbCu2Si2 and YbPd2Si2 has been investigated by LIII(Yb) absorption edges and X-ray pnotoelectron spectra in the 4f and 4d regions. These studies establish the presence of mixed valence in all three systems and illustrate the utility of 4f and 4d spectra in the study of mixed valence in Yb compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of sodium tungsten bronzes NaxWO3 is investigated by high-resolution angle-resolved photoemission spectroscopy (ARPES). The ARPES spectra measured in both insulating and metallic phases of NaxWO3 reveals the origin of metal-insulator transition (MIT) in sodium tungsten bronze system. It is found that in insulating NaxWO3 the states near the Fermi level (E-F) are localized due to the strong disorder caused by the random distribution of Na+ ions in WO3 lattice. Due to the presence of disorder and long-range Coulomb interaction of conduction electrons, a soft Coulomb gap arises, where the density of states vanishes exactly at E-F. In the metallic regime the states near E-F are populated and the Fermi level shifts upward rigidly with increasing electron doping (x). Volume of electron-like Fermi surface (FS) at the Gamma(X) point of the Brillouin zone gradually increases with increasing Na concentration due to W 5d t(2g) band filling. A rigid shift of the Fermi energy is found to give a qualitatively good description of the Fermi surface evolution. As we move from bulk-sensitive to more surface sensitive photon energy, we found the emergence of Fermi surfaces at X(M) and M(R) point similar to the one at the Gamma(X) point in the metallic regime, suggesting that the reconstruction of surface was due to rotation/deformation of WO6 octahedra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the Einstein's photoemission from III-V, II-VI, IV-VI and HgTe/CdTe quantum well superlattices (QWSLs) with graded interfaces and quantum well effective mass superlattices in the presence of a quantizing magnetic field on the basis of newly formulated dispersion relations in the respective cases. Besides, the same has been studied from the afore-mentioned quantum dot superlattices and it appears that the photoemission oscillates with increasing carrier degeneracy and quantizing magnetic field in different manners. In addition, the photoemission oscillates with film thickness and increasing photon energy in quantum steps together with the fact that the solution of the Boltzmann transport equation will introduce new physical ideas and new experimental findings under different external conditions. The influence of band structure is apparent from all the figures and we have suggested three applications of the analyses of this paper in the fields of superlattices and microstructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the photoemission from quantum wire and quantum dot superlattices with graded interfaces of optoelectronic materials on the basis of newly formulated electron dispersion relations in the presence of external photo-excitation. Besides, the influence of a magnetic field on the photoemission from the aforementioned superlattices together with quantum well superlattices in the presence of a quantizing magnetic field has also been studied in this context. It has been observed taking into account HgTe/Hg1-xCdxTe and InxGa1-xAs/InP that the photoemission from these nanostructures increases with increasing photon energy in quantized steps and exhibits oscillatory dependences with the increase in carrier concentration. Besides, the photoemission decreases with increasing light intensity and wavelength, together with the fact that said emission decreases with increasing thickness exhibiting oscillatory spikes. The strong dependences of the photoemission on the light intensity reflects the direct signature of light waves on the carrier energy spectra. The content of this paper finds six applications in the fields of low dimensional systems in general. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the photoemission from quantum wells (QWs) in ultrathin films (UFs) and quantum well wires (QWWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined Ill-V compounds form the special cases of our generalized analysis. The photoemission has also been studied for quantum confined II-VI, n-GaP, n-Ge, PtSb2, stressed materials and Bismuth on the basis of respective dispersion relations. It has been found taking quantum confined CdGeAS(2), InAs, InSb, CdS, GaP, Ge, PtSb2, stressed n-InSb and B1 that the photoemission exhibits quantized variations with the incident photon energy, changing electron concentration and film thickness, respectively, for all types of quantum confinement. The photoemission from CNs exhibits oscillatory dependence with increasing normalized electron degeneracy and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of photoemission from non-degenerate semiconductors and parabolic energy bands, leading to the compatibility test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent, major, puzzle in the core-level photoemission spectra of doped manganites is the observation of a 1–2 eV wide shoulder with intensity varying with temperature T as the square of the magnetization over a T scale of order 200 K, an order of magnitude less than electronic energies. This is addressed and resolved here, by extending a recently proposed two-fluid polaron–mobile electron model for these systems to include core-hole effects. The position of the shoulder is found to be determined by Coulomb and Jahn-Teller energies, while its spectral weight is determined by the mobile electron energetics which is strongly T and doping dependent, due to annealed disorder scattering from the polarons and the t2g core spins. Our theory accounts quantitatively for the observed T dependence of the difference spectra, and furthermore, explains the observed correspondence between spectral changes due to increasing doping and decreasing T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray absorption spectra, X-ray photoelectron spectra and Auger spectra of cuprate superconductors are discussed. The studies establish the absence of Cu3+ for all practical purposes, but point out the importance of oxygen holes. X-ray photoelectron spectra of BaBi0.25Pb0.75O3 and related compounds are also examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A photoemission study of superconducting Nd1.85Ce0.15CuO4-δ shows that Ce in the cuprate is essentially in the 4+ state. While the electron donated by Ce does not appear to affect the Cu 3d band, we still find evidence for the presence of considerable Cu1+ - related configurations due to covalency effects. A role for oxygen holes and Cu1+ species is indicated just as in other cuprate superconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of the insulating sodium tungsten bronze, Na0.025WO3, is investigated by high-resolution angle-resolved photoemission spectroscopy. We find that near-E-F states are localized due to the strong disorder arising from random distribution of Na+ ions in the WO3 lattice, which makes the system insulating. The temperature dependence of photoemission spectra provides direct evidence for polaron formation. The remnant Fermi surface of the insulator is found to be the replica of the real Fermi surface in the metallic system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraviolet and X-ray photoemission spectroscopic (UPS and XPS) studies to characterize the electronic structure of bismuth cuprate superconductor with nominal composition of Bi1.8Pb0.4Sr2Ca2.2Cu3O10 have been carried out. The data clearly shows the metallic emission at the Fermi level (EF). The shoulder (-1.2 eV) near the EF is attributed to the Cu-O derived states. Cu satellite structures observed both in the UPS and XPS show the strongly correlated nature of the Cu 3d electrons. Core level shifts indicate that 3+ and 4+ are the main oxidation of Bi and Pb, respectively. The Pb core lines show two components indicating their inequivalent sites. Core level O 1s spectrum is deconvoluted to show the presence of structurally non-equivalent oxygen sites.