22 resultados para photoelectrochemistry
Resumo:
A quantitative study has been performed on the stability of GaAs surfaces in a 0.10 M K2Se-0.01 M K2Se2 aqueous solution. In this electrolyte, n-type GaAs electrodes displayed significant photocorrosion in competition with faradaic charge transfer to Se2-. Chemisorption of group VIIIB metal ions onto the GaAs surfaces yielded improved current-voltage behavior of the GaAs photoanodes, and also resulted in a significant reduction in photocorrosion. This behavior implies that the chemisorbed metal ions act to increase the rate of hole transfer to the Se2- species. Related experiments on n-GaAs, pGaAs, and Sn-doped In2O3 electrodes in Te2-/- aqueous solutions have also been performed.
The majority carrier (electrons) transfer rate constant at a highly doped n+-Si/Co(Cp)2Cl-methanol junction has been measured directly using the chronoamperometry electrochemical technique. The reduction reaction rate of Co(Cp)2+ was 0.03 cm-s-1 at the Si electrode, and was more than 100 times slower than at a hanging mercury electrode. The slower rate was attributed to the smaller optical and static dielectric constants, and the lower density of electrons of the semiconductor. The experimental results were compared to the Marcus theory of charge transfer.
The unique properties of high purity Si/liquid junctions have been investigated under illumination conditions in which the photogenerated carrier concentration exceeds the dopant concentration. Under these high injection conditions, negligible electric fields exist at the semiconductor/liquid interface, and carrier motion is driven by diffusion. Studies of the current-voltage properties of the Si in methanol solutions containing various redox couples suggested that high efficiency photoelectrochemical cells could be established through selective collection of carriers at the semiconductor/liquid junction. The quasi-Fermi levels of electrons and holes were measured directly against the solution potential. Steady-state and transient photovoltage measurements, and theoretical modeliug of the carrier transport, generation, and recombination dynamics indicated that the quasi-Fermi levels were flat across the semiconductor sample. The recombination velocities at the Si/liquid junctions have also been measured, and were shown to vary with the solution potential following the Shockley-Read-Hall theory on recombination.
Resumo:
Electrodeposition of CuInSe2 was investigated in acidic solutions containing Cu2+, In3+ and HSeO2+ ions. The electrodeposition condition was optimized with the aim of obtaining uniform thin films on titanium substrate. The mechanism of the electrodeposition process is discussed. Structure analysis of the deposited film shows a typical polycrystalline chalcopyrite structure, good crystallinity and homogeneous dispersion. The photoelectrochemical cells made of these kinds of deposited films in polysulfide redox solution give distinct photoresponse.
Resumo:
Photoexcited electrochemically generated quinone radical anions reduced 1,2-dibromobenzene to bromobenzene, 1,4-dibromobenzene to bromobenzene and 4-chlorobenzonitrile to benzonitrile. In the presence of anthracene, 2-bromophenyl-, 4-bromophenyl- and 4-cyanophenyl-anthracenes were formed. With acetaldehyde, acetone, acetophenone, benzaldehyde and benzophenone, the major products were the corresponding pinacols, with small amounts of the two-electron secondary alcohols. In acetonitrile as solvent, cinnamonitriles, hydrocinnamonitriles and phenylglutaronitriles were formed in addition to the alcohols. Glyoxylic acid was reduced to tartaric, glycolic and malic acids. The reduction of CO2 was unsuccessful.
Resumo:
Cyclic voltammograms of quinones were recorded in acetonitrile in the presence of various substrates: carbonyl compounds, halobenzenes, Methyl Viologen and Neutral Red. When illuminated with light of λ >410 nm, catalytic waves were observed. From the ratio of the catalysed to uncatalysed peak current, electron transfer rate constants were calculated using the working curves of Saveant and coworkers. The values of these rate constants were compared with the values obtained by Shukla and Rusling for different systems using a similar method and with quenching rate constants calculated using Rehm-Weller-Marcus theory.
Resumo:
The photoelectrochemistry of quinone radical anions has been demonstrated qualitatively by the photoassisted reduction of methyl viologen with benzoquinone and of neutral red with chloranil. Data were then collected for the estimation of quenching rate constants using Marcus-Weller theory. Reduction potentials of seven quinones were obtained in four solvents (and two aqueous mixtures) by cyclic voltammetry. The solvent effects on these potentials were studied by fitting them to the Taft relationship. The effects of proton donors were also noted. Absorption spectra of the radical anions were measured and the solvent effects noted and commented upon. From the molar absorption coefficients of the radical anions, the mean lifetimes of the excited states were estimated. Fluorescence spectra were obtained for anthraquinone and naphthaquinone radical anions and excitation energies were calculated. These values were estimated for the other quinones. Values of redox potentials for the excited radical anions were thence obtained. The Gibbs energies of the electron transfers between the excited quinone radical anions and the various substrates were obtained and hence the Gibbs energies of activation were calculated using the Marcus equation. The quenching rate constants were calculated using the Rehm-Weller equation and plotted vs. ΔG giving a characteristic Marcus plot including some data in the inverted region. The significance of the inverted region is discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Photoelectrocatalytic degradation of metallophtalocyanine reactive dye (turquoise blue 15) was performed using a Ti/TiO2 thin film photoanode prepared by sol-get method. Hundred percent of color removal and almost complete mineralization (95% at pH 2 and 85% at pH 8) where achieved after 6 h of photolectrocatalytic oxidation of 2.5 x 10(-5) mol L-1 AT15 dye in Na2SO4 mol L-1 under E = +1.2 V versus SCE. The method limitation occurs at dye concentration higher than 4 x 10-5 mol L-1, where the degradation rate becomes markedly slower. An important improvement in color removal and TOC reduction for 1 x 10(-3) mol L-1 metallophtalocyanine dye was achieved using a combined process. After 4 h of potential controlled electrolysis at -1.2 V on a cathode of platinum followed by 6 h of photoelectrocatalytic oxidation leads to 100% of color removal and 83% of TOC decay and eletrodeposition of 69% of the released copper originally presented as copperphtalocyanine complex, by electrodeposition on the cathode without any other treatment. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar.
Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry.
The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires.
Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction arrays. These devices offer potential efficiencies of 34%, as demonstrated through an analytical model and optoelectronic simulations. SiGe and Ge wires were fabricated via chemical-vapor deposition and reactive ion etching. GaAs was then grown on these substrates at the National Renewable Energy Lab and yielded ns lifetime components, as required for achieving high efficiency devices.
Resumo:
This dissertation describes efforts over the last five years to develop protective layers for semiconductor photoelectrodes based on monolayer or few-layer graphene sheets. Graphene is an attractive candidate for a protective layer because of its known chemical inertness, transparency, ease of deposition, and limited number of electronic states. Monolayer graphene was found to effectively inhibit loss of photocurrent over 1000 seconds at n-Si/aqueous electrolyte interfaces that exhibit total loss over photocurrent over 100 seconds. Further, the presence of graphene was found to effect only partial Fermi level pinning at the Si/graphene interface with respect to a range of nonaqueous electrolytes. Fluorination of graphene was found to extend the stability imparted on n-Si by the monolayer sheet in aqueous Fe(CN)63-/4- electrolyte to over 100,000 seconds. It was demonstrated that the stability of the photocurrent of n-Si/fluorinated graphene/aqueous electrolyte interfaces relative to n-Si/aqueous electrolyte interfaces is likely attributable to the inhibition of oxidation of the silicon surface.
This dissertation also relates efforts to describe and define terminology relevant to the field of photoelectrochemistry and solar fuels production. Terminology describing varying interfaces employed in electrochemical solar fuels devices are defined, and the research challenges associated with each are discussed. Methods for determining the efficiency of varying photoelectrochemical and solar-fuel-producing cells from the current-voltage behavior of the individual components of such a device without requiring the device be constructed are described, and a range of commonly employed performance metrics are explored.
Resumo:
The innately highly efficient light-powered separation of charge that underpins natural photosynthesis can be exploited for applications in photoelectrochemistry by coupling nanoscale protein photoreaction centers to man-made electrodes. Planar photoelectrochemical cells employing purple bacterial reaction centers have been constructed that produce a direct current under continuous illumination and an alternating current in response to discontinuous illumination. The present work explored the basis of the open-circuit voltage (V(OC)) produced by such cells with reaction center/antenna (RC-LH1) proteins as the photovoltaic component. It was established that an up to ~30-fold increase in V(OC) could be achieved by simple manipulation of the electrolyte connecting the protein to the counter electrode, with an approximately linear relationship being observed between the vacuum potential of the electrolyte and the resulting V(OC). We conclude that the V(OC) of such a cell is dependent on the potential difference between the electrolyte and the photo-oxidized bacteriochlorophylls in the reaction center. The steady-state short-circuit current (J(SC)) obtained under continuous illumination also varied with different electrolytes by a factor of ~6-fold. The findings demonstrate a simple way to boost the voltage output of such protein-based cells into the hundreds of millivolts range typical of dye-sensitized and polymer-blend solar cells, while maintaining or improving the J(SC). Possible strategies for further increasing the V(OC) of such protein-based photoelectrochemical cells through protein engineering are discussed.
Resumo:
Electrolyte electroreflectance spectra of the near-surface strained-layer In0.15Ga0.85As/GaAs double single-quantum-well electrode have been studied at different biases in non-aqueous solutions of ferrocene and acetylferrocene. The optical transitions, the Franz-Keldysh oscillations (FKOs) and the quantum confined Stark effects (QCSE) of In0.15Ga0.85As/GaAs quantum well electrodes are analyzed. Electric field strengths at the In0.15Ga0.85As/GaAs interface are calculated in both solutions by a fast Fourier transform analysis of FKOs. A dip is exhibited in the electric field strength versus bias (from 0 to 1.2 V) curve in ferrocene solution. A model concerning the interfacial tunneling transfer of electrons is used to explain the behavior of the electric field. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The photoelectric properties of the lattice-matched GaAs/AlxGa1-xAs quantum well electrodes and the influence of the electrode structure such as well width, the thickness of outer barrier and the number of period were studied in a nonaqueous electrolyte. A new kind of structure of multiple quantum well electrode with varied well width, possessing the quantum yield three times that of GaAs bulk materials, was designed and fabricated.
Resumo:
New environmentally acceptable production methods are required to help reduce the environmental impact of many industrial processes. One potential route is the application of photocatalysis using semiconductors. This technique has enabled new environmentally acceptable synthetic routes for organic synthesis which do not require the use of toxic metals as redox reagents. These photocatalysts also have more favourable redox potentials than many traditional reagents. Semiconductor photocatalysis can also be applied to the treatment of polluted effluent or for the destruction of undesirable by-products of reactions. In addition to the clean nature of the process the power requirements of the technique can be relatively low, with some reactions requiring only sunlight.
Resumo:
Solar-driven water splitting to produce hydrogen may be an ideal solution for global energy and environment issues. Among the various photocatalytic systems, platinum has been widely used to co-catalyse the reduction of protons in water for hydrogen evolution. However, the undesirable hydrogen oxidation reaction can also be readily catalysed by metallic platinum, which limits the solar energy conversion efficiency in artificial photosynthesis. Here we report that the unidirectional suppression of hydrogen oxidation in photocatalytic water splitting can be fulfilled by controlling the valence state of platinum; this platinum-based cocatalyst in a higher oxidation state can act as an efficient hydrogen evolution site while suppressing the undesirable hydrogen back-oxidation. The findings in this work may pave the way for developing other high-efficientcy platinum-based catalysts for photocatalysis, photoelectrochemistry, fuel cells and water-gas shift reactions.