846 resultados para phospholipid-metabolism
Resumo:
The phenomenon of neurotransmitter-stimulated incorporation of32Pi into phosphatidic acid and inositol phosphatides (neurotransmitter effect) in developing brain was studied in vitro as a possible measure of synaptogenesis. While the neurotransmitter effect was not observed with brain homogenates, highly consistent and significant effects were noted with brain tissue suspensions obtained by passing the tissue through nylon bolting cloth. The magnitude of the effect decreased with the increase in mesh number. Maximum stimulations obtained with the 33 mesh adult brain cortex preparations (mean±S.E.M. of6experiments) were203 ± 8%, 316 ± 11 % and150 ± 8% with 10−3 M acetylcholine (ACh) + 10−3 M eserine; 10−2 M norepinephrine (NE) and 10−2 M serotonin (5-HT), respectively. Experiments with developing rat brain at 7, 14 and 21 days of age showed that the neurotransmitter effects due to ACh, NE and 5-HT increase progressively in different regions of the brain but that there are marked regional differences. It is suggested that the neurotransmitter effect is a valid biochemical correlate of synaptogenesis. In rats undernourished from birth t0 21 days of age, by increasing the litter size, the neurotransmitter effect with ACh, NE or 5-HT was not altered in the cortex but was significantly reduced in the brain stem. In cerebellum the effects due to ACh and NE were significantly altered, while that with 5-HT was unaffected. It is concluded that cholinergic, adrenergic and serotonergic synapses are relatively unaffected in the cortex but are significantly affected in the brain stem by undernutrition. In the cerebellum of undernourished rats the adrenergic and cholinergic, but not serotonergic systems, are altered.
Resumo:
Previous work from our laboratory had demonstrated that deletion of TGL3 encoding the major yeast triacylglycerol (TAG) lipase resulted in decreased mobilization of TAG, a sporulation defect and a changed pattern of fatty acids, especially increased amounts of C22:0 and C26:0 very long chain fatty acids in the TAG fraction K. Athenstaedt and G. Daum, J. Biol. Chem. 278 (2003) 23317-23323]. To study a possible link between TAG lipolysis and membrane lipid biosynthesis, we carried out metabolic labeling experiments with wild type and deletion strains bearing defects in the three major yeast TAG lipases, Tgl3p, Tgl4p and Tgl5p. Using H-3]inositol. P-32]orthophosphate, 3H]palmitate and C-14]acetate as precursors for complex lipids we demonstrated that tgl mutants had a lower level of sphingolipids and glycerophospholipids than wild type. ESI-MS/MS analyses confirmed that TAG accumulation in these mutant cells resulted in reduced amounts of phospholipids and sphingolipids. In vitro and in vivo experiments revealed that TAG lipolysis markedly affected the metabolic flux of long chain fatty acids and very long chain fatty acids required for sphingolipid and glycerophospholipid synthesis. Activity and expression level of fatty acid elongases, Elo1p and Elo2p were enhanced as a consequence of reduced TAG lipolysis. Finally, the pattern of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine molecular species was altered in tgl deletion strain underlining the important role of TAG turnover in maintaining the pool size of these compounds and the remodeling of complex membrane lipids. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
DDT1 MF-2 cells, which are derived from hamster vas deferens smooth muscle, contain alpha 1-adrenergic receptors (54,800 +/- 2700 sites per cell) that are coupled to stimulation of inositol phospholipid metabolism. Incubation of these cells with tumor-promoting phorbol esters, which stimulate calcium- and phospholipid-dependent protein kinase, leads to a marked attenuation of the ability of alpha 1-receptor agonists such as norepinephrine to stimulate the turnover of inositol phospholipids. This turnover was measured by determining the 32P content of phosphatidylinositol and phosphatidic acid after prelabeling of the cellular ATP pool with 32Pi. These phorbol ester-treated cells also displayed a decrease in binding affinity of cellular alpha 1 receptors for agonists with no change in antagonist affinity. By using affinity chromatography on the affinity resin Affi-Gel-A55414, the alpha 1 receptors were purified approximately equal to 300-fold from control and phorbol ester-treated 32Pi-prelabeled cells. As assessed by NaDodSO4/polyacrylamide gel electrophoresis, the Mr 80,000 alpha 1-receptor ligand-binding subunit is a phosphopeptide containing 1.2 mol of phosphate per mol of alpha 1 receptor. After phorbol ester treatment this increased to 3.6 mol of phosphate per mol of alpha 1 receptor. The effect of phorbol esters on norepinephrine-stimulated inositol phospholipid turnover and alpha 1-receptor phosphorylation showed the same rapid time course with a t1/2 less than 2 min. These results indicate that calcium- and phospholipid-dependent protein kinase may play an important role in regulating the function of receptors that are coupled to the inositol phospholipid cycle by phosphorylating and deactivating them.
Effect of undernutrition on the metabolism of phospholipids and gangliosides in developing rat brain
Resumo:
1. Phospholipid content of brains of 3- or 8-week-old undernourished rats was 7--9% less than that for the corresponding control animals and this deficit could not be made up by rehabilitation. Phosphatidyl ethanolamine and plasmalogen were the components most affected in brains of undernourished rats. 2. Incorporation of 32P into phospholipids by brain homogenates was 28% higher in 3-week-old undernourished rats. It is suggested that enhanced phospholipid metabolism in undernourished animals may be related to behavioural alterations noted previously (Sobotka, Cook & Brodie, 1974). 3. Ganglioside concentrations in 3- and 8-week-old undernourished animals were 14% and 11.5% less respectively than those of the control animals and this difference could be made up by rehabilitation. [14C]Glucosamine incorporation in vivo into brain gangliosides was not affected by undernutrition.
Resumo:
In this study we investigated the metabolism, i.e. remodeling and translocation, of the aminophospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE). A new method for introduction of exogenous PS and PE molecular species to cultured cells was developed, and combined with mass spectrometry it enabled more detailed follow-up of the metabolism of single molecular species than previously. We found that I) exogenous PS and PE molecular species can be efficiently introduced to cultured cells without compromising cell integrity, II) PS and PE molecular species are remodeled by several phospholipases displaying selectivity based on phopholipid head group and acyl chain composition, III) PS decarboxylase (PSD) and Kennedy pathways provide a different PE molecular species composition to the cellular PE pool. In addition, PE species produced by these pathways are translocated from the site of synthesis to other cell compartments depending on their acyl chain composition. The data obtained in the present study helps to understand cellular phospholipid metabolism in more depth. The data show that effective labeling of cultured cells by exogenous phospholipids does not compromise cell viability and may be used to disturb cellular phospholipid composition to study lipid homeostasis. Remodeling and translocation of PS and PE molecular species is highly selective. The developed method and mass- spectrometric techniques may be used in future studies to understand disturbances in lipid homeostasis for example in diabetes mellitus, thus opening doors to optional scientific approaches to study mechanisms behind pathologies related to lipid disturbances.
Resumo:
SacIp dysfunction results in bypass of the requirement for phosphatidylinositol transfer protein (Sec14p) function in yeast Golgi processes. This effect is accompanied by alterations in inositol phospholipid metabolism and inositol auxotrophy. Elucidation of how sac1 mutants effect “bypass Sec14p” will provide insights into Sec14p function in vivo. We now report that, in addition to a dramatic accumulation of phosphatidylinositol-4-phosphate, sac1 mutants also exhibit a specific acceleration of phosphatidylcholine biosynthesis via the CDP-choline pathway. This phosphatidylcholine metabolic phenotype is sensitive to the two physiological challenges that abolish bypass Sec14p in sac1 strains; i.e. phospholipase D inactivation and expression of bacterial diacylglycerol (DAG) kinase. Moreover, we demonstrate that accumulation of phosphatidylinositol-4-phosphate in sac1 mutants is insufficient to effect bypass Sec14p. These data support a model in which phospholipase D activity contributes to generation of DAG that, in turn, effects bypass Sec14p. A significant fate for this DAG is consumption by the CDP-choline pathway. Finally, we determine that CDP-choline pathway activity contributes to the inositol auxotrophy of sac1 strains in a novel manner that does not involve obvious defects in transcriptional expression of the INO1 gene.
Resumo:
In the yeast, mobilization of triacylglycerols (TAG) is facilitated by TGL3, TGL4 and TGL5 gene products. Interestingly, experiments using [32P] orthophosphate as a precursor for complex glycerophospholipids revealed that tgl mutants had a lower steady-state level of these membrane lipids. To understand a possible link between TAG lipolysis and phospholipid metabolism, we performed overexpression studies with Tgl3p and Tgl5p which clearly demonstrated that these two enzymes enhanced the level of phospholipids. Domains and motifs search analyses indicated that yeast TAG hydrolases posses a GXSXG lipase motif but also a HX4D acyltransferase motif. Purified Tgl3p and Tgl5p did not only exhibit TAG lipase activity but also catalyzed acyl-CoA dependent acylation of lyso-phosphatidylethanolamine and lyso-phosphatidic acid (LPA), respectively. Search for lipase/hydrolase homologues in the Arabidopsis thaliana genome led to the identification of At4g24160 which possess three motifs that are conserved across the plant species such as GXSXG motif, a HX4D motif and a probable lipid binding motif V(X)3HGF. Characterization of At4g24160 expressed in bacteria revealed that the presence of an acyl-CoA dependent LPA acyltransferase activity. In addition, the purified recombinant At4g24160 protein hydrolyzed both TAG and phosphatidylcholine. We hypothesize that the plant enzyme may be involved in membrane repair. In summary, our results indicate that these TAG lipases play a dual role and thereby contribute to both anabolic and catabolic processes in yeast and plants.
Resumo:
Increasing evidence links metabolic signals to cell proliferation, but the molecular wiring that connects the two core machineries remains largely unknown. E2Fs are master regulators of cellular proliferation. We have recently shown that E2F2 activity facilitates the completion of liver regeneration after partial hepatectomy (PH) by regulating the expression of genes required for S-phase entry. Our study also revealed that E2F2 determines the duration of hepatectomy-induced hepatic steatosis. A transcriptomic analysis of normal adult liver identified "lipid metabolism regulation" as a major E2F2 functional target, suggesting that E2F2 has a role in lipid homeostasis. Here we use wild-type (E2F2(+/+)) and E2F2 deficient (E2F2(-/-)) mice to investigate the in vivo role of E2F2 in the composition of liver lipids and fatty acids in two metabolically different contexts: quiescence and 48-h post-PH, when cellular proliferation and anabolic demands are maximal. We show that liver regeneration is accompanied by large triglyceride and protein increases without changes in total phospholipids both in E2F2(+/+) and E2F2(-/-) mice. Remarkably, we found that the phenotype of quiescent liver tissue from E2F2(-/-) mice resembles the phenotype of proliferating E2F2(+/+) liver tissue, characterized by a decreased phosphatidylcholine to phosphatidylethanolamine ratio and a reprogramming of genes involved in generation of choline and ethanolamine derivatives. The diversity of fatty acids in total lipid, triglycerides and phospholipids was essentially preserved on E2F2 loss both in proliferating and non-proliferating liver tissue, although notable exceptions in inflammation-related fatty acids of defined phospholipid classes were detected. Overall, our results indicate that E2F2 activity sustains the hepatic homeostasis of major membrane glycerolipid components while it is dispensable for storage glycerolipid balance.
Resumo:
The cDNA for the Syrian hamster alpha 1-adrenergic receptor has been cloned with oligonucleotides corresponding to the partial amino acid sequence of the receptor protein purified from DDT1MF-2 smooth muscle cells. The deduced amino acid sequence encodes a 515-residue polypeptide that shows the most sequence identity with the other adrenergic receptors and the putative protein product of the related clone G-21. Similarities with the muscarinic cholinergic receptors are also evident. Expression studies in COS-7 cells confirm that we have cloned the alpha 1-adrenergic receptor that couples to inositol phospholipid metabolism.
Resumo:
Background & aim: To compare the effect of fish oil-based (FO) lipid emulsions (LE) for parenteral administration with standard LE and a new FO containing LE composed of four different oils on the antigen presentation and inflammatory variables. Methods: Phytohemagglutinin (PHA) activated human mononuclear leukocytes were cultured with different LE - Control: without LE; SO: soybean oil; SO/FO: soybean and FO (4:1); MCT/SO: medium chain triglycerides and SO (1:1); MCT/SO/FO: MCT/SO and FO (4:1) and SMOF: a new LE containing FO. Cytokine production was evaluated by ELISA, the expression of antigen-presenting and co-stimulatory surface molecules were analyzed by flow cytometry and lymphocyte proliferation was assessed by H(3)-Thymidine incorporation, after tetanus toxoid-induced activation. Results: All LE decreased the HLA-DR and increased CD28 and CD152 expression on monocytes/macrophages and lymphocytes surface (p < 0.05). SO/FO and MCT/SO/FO decreased lymphocyte proliferation (p<0.05). All LE decreased IL-2 product ion, but this effect was enhanced with MCT/SO/FO and SMOF (p < 0.05). MCT/SOTO decreased IL-6 and increased IL-10, whereas SO had the opposite effect (p < 0.05). Conclusion: FO LE inhibited lymphocyte proliferation and had an anti-inflammatory effect. These effects seem to be enhanced when FO is mixed with MCT/SO. SMOF had a neutral impact on lymphocyte proliferation and IL-6 and IL-10 production.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Phospholipids are not only major building blocks of biological membranes but fulfill a wide range of critical functions that are often widely unrecognized. In this review, we focus on phosphatidylethanolamine, a major glycerophospholipid class in eukaryotes and bacteria, which is involved in many unexpected biological processes. We describe (i) the ins, i.e. the substrate sources and biochemical reactions involved in phosphatidylethanolamine synthesis, and (ii) the outs, i.e. the different roles of phosphatidylethanolamine and its involvement in various cellular events. We discuss how the protozoan parasite, Trypanosoma brucei, has contributed and may contribute in the future as eukaryotic model organism to our understanding of phosphatidylethanolamine homeostasis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Resumo:
Phospholipid metabolism plays an important role in cellular regulation by generating second messengers for signal transduction. Many stimuli activate a phospholipase D, which catalyzes the hydrolysis of phosphatidylcholine, producing phosphatidic acid and choline. Here we report that the yeast SP014 gene, which is essential for meiosis [Honigberg, S. M., Conicella, C. & Esposito, R. E. (1992) Genetics 130, 703-716], encodes a phospholipase D. SP014 RNA and protein activity are induced during late meiotic prophase, and the enzyme has properties similar to mammalian phosphatidylinositol 4,5-bisphosphate-regulated phospholipase D. Characterization of an unusual allele of SP014 defines regions of the protein important for enzyme catalysis and regulation. These results implicate phospholipase D signaling in regulating cellular differentiation.
Resumo:
Previous studies have reported that patients with schizophrenia demonstrate impaired performance during working memory (WM) tasks. The current study aimed to determine whether WM impairments in schizophrenia are accompanied by reduced slow wave (SW) activity during on-line maintenance of mnemonic information. Event-related potentials were obtained from patients with schizophrenia and well controls as they performed a visuospatial delayed response task. On 50% of trials, a distractor stimulus was introduced during the delay. Compared with controls, patients with schizophrenia produced less SW memory negativity, particularly over the right hemisphere, together with reduced frontal enhancement of SW memory negativity in response to distraction. The results indicate that patients with schizophrenia generate less maintenance phase neuronal activity during WM performance, especially under conditions of distraction.