8 resultados para phosphinate
Resumo:
The synthesis and characterization of a new organic ligand monooctyldiphenylphosphinate (L) is described, as well as a new Eu(3+) diketonate complex [Eu(tta)(3)(L)(2)] (tta = thenoyltrifluoracetone). The ligand (L) was formed by substitution reaction (80% yield) and characterized by uni- and bidimensional (1)H, (13)C and (31)P NMR experiments, to confirm its molecular structure. The coordination of (L) to Eu(3+) in the complex [Eu(tta)(3)(L)(2)] was confirmed by FT-IR spectra. The emission spectra present the same profile when excited in Eu(3+) or in the ligands, suggesting an energy transfer from ligands to Eu(3+) ions. The emission spectra of the precursor [Eu(tta)(3)(H(2)O)(2)], and [Eu(tta)(3)(L(2))] present bands arising from f-f intra-configurational transitions. The only (5)D(0)-(7)F(0) transition shows the presence of at least one site without symmetry center. The FWHM of such transition is 7 cm(-1) and 57 cm(-1) for [Eu(tta)(3)(H(2)O)(2)] and [Eu(tta)(3)(L)(2)] complexes, respectively. This widening is provided by the presence of large groups around Eu(3+) ion. The calculated intensity parameters Omega(2) and Omega(4) show that the interaction features between center-ion and ligand are different; the small value of Omega(4) is related to long range effects of alkyl chain. The Langmuir isotherms of this ligand and complex have been investigated although their hydrolysis in water subphase does not allow stable monolayers. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The work presented in this dissertation deals with the coordination chemistry of the bis(benzyl)phosphinate ligand with vanadium, tungsten and cobalt. The long term goal of this project was to produce and physically characterize high oxidation state transition metal oxide phosphinate compounds with potential catalytic applications. The reaction of bis(benzyl)phosphinic acid with VO(acac)2 in the presence of water or pyridine leads to the synthesis of trimeric vanadium(IV) clusters (V3(µ3-O)O2)(µ2-O2P(CH2C6H5)2)6(H2O) and (V3(µ3-O)O2)(µ2-O2P(CH2C6H5)2)6(py). In contrast, when diphenylphosphinic acid or 2-hydroxyisophosphindoline-2-oxide were reacted with VO(acac)2, insoluble polymeric compounds were produced. The trimeric clusters were characterized using FTIR, elemental analysis, single crystal diffraction, room temperature magnetic susceptibility, thermogravimetric analysis and differential scanning calorimetry. The variable-temperature, solid-state magnetic susceptibility was measured on (V3(µ3-O)O2)(µ2-O2P(CH2C6H5)2)6(py). The polymeric compounds were characterized using FTIR, powder diffraction and elemental analysis. Two different cubane clusters made of tungsten(V) and vanadium(V) were stabilized using bis(benzyl)phosphinate. The oxidation of (V3(µ3-O)O2)(µ2-O2P(CH2C6H5)2)6(H2O) with tBuOOH led to the formation of V4(µ3-O)4(µ2-O2P(Bn)2)4(O4). W4(µ3-O)4(µ2-O2P(Bn)2)4(O4) was produced by heating W(CO)6 in a 1:1 mixture of EtOH/THF at 120 ˚C. Both compounds were characterized using single crystal diffraction, FTIR, 31P-NMR, 1H-NMR and elemental analysis. W4(µ3-O)4(µ2-O2P(Bn)2)4(O4) was also characterized using UV-vis. Cobalt(II) reacted with bis(benzyl)phosphinate to produce three different dinuclear complexes. [(py)3Co(µ2-O2P(Bn)2)3Co(py)][ClO4], (py)3Co(µ2-O2P(Bn)2)3Co(Cl) and (py)(µ2-NO3)Co(µ2-O2P(Bn)2)3Co(py) were all characterized using single crystal diffraction, elemental analysis and FTIR. Room temperature magnetic susceptibility measurements were performed on [(py)3Co(µ2-O2P(Bn)2)3Co(py)][ClO4] and (py)3Co(µ2-O2P(Bn)2)3Co(Cl). The variable-temperature, solid-state magnetic susceptibility was also measured on [(py)3Co(µ2-O2P(Bn)2)3Co(py)][ClO4].
Resumo:
VanX is a D-Ala-D-Ala dipeptidase that is essential for vancomycin resistance in Enterococcus faecium. Contrary to most proteases and peptidases, it prefers to hydrolyze the amino substrate but not the related kinetically and thermodynamically more favorable ester substrate D-Ala-D-lactate. The enzymatic activity of VanX was previously found to be inhibited by the phosphinate analogs of the proposed tetrahedral intermediate for hydrolysis of D-Ala-D-Ala. Here we report that such phosphinates are slow-binding inhibitors. D-3-[(1-Aminoethyl)phosphinyl]-D-2-methylpropionic acid I showed a time-dependent onset of inhibition of VanX and a time-dependent return to uninhibited steady-state rates upon dilution of the enzyme/inhibitor mixture. The initial inhibition constant Ki after immediate addition of VanX to phosphinate I to form the E-I complex is 1.5 microM but is then lowered by a relatively slow isomerization step to a second complex, E-I*, with a final K*i of 0.47 microM. This slow-binding inhibition reflects a Km/K*i ratio of 2900:1. The rate constant for the slow dissociation of complex E-I* is 0.24 min-1. A phosphinate analog with an ethyl group replacing what would be the side chain of the second D-alanyl residue in the normal tetrahedral adduct gives a K*i value of 90 nM. Partial proteolysis of VanX reveals two protease-sensitive loop regions that are protected by the intermediate analog phosphinate, indicating that they may be part of the VanX active site.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Mo(VI) oxo complexes have been persistently sought after as epoxidation catalysts. Further, Mo(V) oxo clusters of the form M4(µ3-X)4 (M = transition metal, X = O, S) have been rigorously studied due to their remarkable structures and also their usefulness as models for electronic studies. The syntheses and characterizations of new Mo(VI) and Mo(V) oxo complexes have been described in this dissertation. Two new complexes MoO2Cl2Ph2P(O)CH2COOH and MoO2Cl2Ph2P(O)C6H4tBuS(O) were synthesized from reactions of “MoO2Cl2” with ligands Ph2P(O)CH2COOH and Ph2P(O)C6H4tBuS(O). Tetrameric packing arrangements comprised of hydrogen bonds were obtained for the complex MoO2Cl2Ph2P(O)CH2COOH and the ligand Ph2P(O)CH2COOH. Further the stability of an Mo-O bond was preferred over the Mo-S bond even though this resulted in the formation of a more strained seven membered ring. Tetranuclear Mo(V) complexes of the form [Mo4(µ3-O)4(µ-O2PR2)4O4], (PR2 = PPh2, PMe2) were synthesized using reactions of MoO2(acac)2 with diphenyl and dimethyl phosphinic acids, in ethanol. In the crystal structure of these complexes four Mo=O units are interconnected by four triply bridging oxygen atoms and bridging phosphinate ligands. The complex exhibited fourfold symmetry as evidenced by a single 31P NMR peak for the P atoms in the coordinated ligands. Reaction of WO2(acac)2 with Ph2POOH in methanol resulted in a dimeric W(VI) complex [(CH3O)2(O)W(µ-O)( µ-O2PPh2)2W(O)(CH3O)2] which contained a packing disorder in its crystal structure. Similar reactions of MoO2(acac)2 with benzoic acid derivatives resulted in dimeric complexes of the form [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2CR)] (R = C6H5, (o-OH)C6H4, (p-Cl)C6H4, (2,4-(OH)2)C6H3, (o-I)C6H4) and one tetrameric complex [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2C)C6H4(p-µ-O2C)Mo2O2(acac)2(µ-O)(µ-OC2H5)] with terephthalic acid. 1H NMR proved very useful in the prediction of the formation of dimers with the substituted benzoic acids, which were also confirmed by elemental analyses. The reductive capability of ethanol proved instrumental in the syntheses of Mo(V) tetrameric and dimeric clusters. Synthetic details, IR, 1H and 31P NMR spectroscopy and elemental analyses are reported for all new complexes. Further, single crystal X-ray structures of MoO2Cl2Ph2P(O)CH2COOH, MoO2Cl2Ph2P(O)C6H4tBuS(O), [Mo4(µ3-O)4(µ-O2PR2)4O4], (PR2 = PPh2, PMe2), [(CH3O)2(O)W(µ-O)( µ-O2PPh2)2W(O)(CH3O)2] and [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2CR)] (R = C6H5, (o-OH)C6H4) are also presented.
Resumo:
We synthesized the phosphinate 7 via photoaddition of methanol to the alpha, beta unsaturated deoxyribono lactone as the key step, followed by an Arbusov reaction for the introduction of phosphorous. Precursor 7 serves for the synthesis and incorporation into DNA of a novel chemically stable abasic site analogue that might act as an inhibitor for DNA glycosylases
Resumo:
In this work, ionic liquids are evaluated for the first time as solvents for extraction and entrainers in separation processes involving terpenes and terpenoids. For that purpose, activity coefficients at infinite dilution, γ13 ∞, of terpenes and terpenoids, in the ionic liquids [C4mim]Cl, [C4mim][CH3SO3], [C4mim][(CH3)2PO4] and [C4mim][CF3SO3] were determined by gas−liquid chromatography at six temperatures in the range 398.15 to 448.15 K. On the basis of the experimental values, a correlation of γ13 ∞ with an increase of the solubility parameters is proposed. The infinite dilution thermodynamic functions were calculated showing the entropic effect is dominant over the enthalpic. Gas−liquid partition coefficients give indications about the recovery and purification of terpenes and terpenoids from ionic liquid solutions. Presenting a strong innovative character, COSMO-RS was evaluated for the description of the selectivities and capacities, showing to be a useful tool for the screening of ionic liquids in order to find suitable candidates for terpenes and terpenoids extraction, and separation. COSMO-RS predictions show that in order to achieve the maximum separation efficiency, polar anions should be used such as bis(2,4,4-trimethylpentyl)phosphinate or acetate, whereas high capacities require nonpolar cations such as phosphonium.