997 resultados para phase retrieval


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of phase retrieval, which is frequently encountered in optical imaging. The measured quantity is the magnitude of the Fourier spectrum of a function (in optics, the function is also referred to as an object). The goal is to recover the object based on the magnitude measurements. In doing so, the standard assumptions are that the object is compactly supported and positive. In this paper, we consider objects that admit a sparse representation in some orthonormal basis. We develop a variant of the Fienup algorithm to incorporate the condition of sparsity and to successively estimate and refine the phase starting from the magnitude measurements. We show that the proposed iterative algorithm possesses Cauchy convergence properties. As far as the modality is concerned, we work with measurements obtained using a frequency-domain optical-coherence tomography experimental setup. The experimental results on real measured data show that the proposed technique exhibits good reconstruction performance even with fewer coefficients taken into account for reconstruction. It also suppresses the autocorrelation artifacts to a significant extent since it estimates the phase accurately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of two-dimensional (2-D) phase retrieval from magnitude of the Fourier spectrum. We consider 2-D signals that are characterized by first-order difference equations, which have a parametric representation in the Fourier domain. We show that, under appropriate stability conditions, such signals can be reconstructed uniquely from the Fourier transform magnitude. We formulate the phase retrieval problem as one of computing the parameters that uniquely determine the signal. We show that the problem can be solved by employing the annihilating filter method, particularly for the case when the parameters are distinct. For the more general case of the repeating parameters, the annihilating filter method is not applicable. We circumvent the problem by employing the algebraically coupled matrix pencil (ACMP) method. In the noiseless measurement setup, exact phase retrieval is possible. We also establish a link between the proposed analysis and 2-D cepstrum. In the noisy case, we derive Cramer-Rao lower bounds (CRLBs) on the estimates of the parameters and present Monte Carlo performance analysis as a function of the noise level. Comparisons with state-of-the-art techniques in terms of signal reconstruction accuracy show that the proposed technique outperforms the Fienup and relaxed averaged alternating reflections (RAAR) algorithms in the presence of noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of phase retrieval from Fourier transform magnitude spectrum for continuous-time signals that lie in a shift-invariant space spanned by integer shifts of a generator kernel. The phase retrieval problem for such signals is formulated as one of reconstructing the combining coefficients in the shift-invariant basis expansion. We develop sufficient conditions on the coefficients and the bases to guarantee exact phase retrieval, by which we mean reconstruction up to a global phase factor. We present a new class of discrete-domain signals that are not necessarily minimum-phase, but allow for exact phase retrieval from their Fourier magnitude spectra. We also establish Hilbert transform relations between log-magnitude and phase spectra for this class of discrete signals. It turns out that the corresponding continuous-domain counterparts need not satisfy a Hilbert transform relation; notwithstanding, the continuous-domain signals can be reconstructed from their Fourier magnitude spectra. We validate the reconstruction guarantees through simulations for some important classes of signals such as bandlimited signals and piecewise-smooth signals. We also present an application of the proposed phase retrieval technique for artifact-free signal reconstruction in frequency-domain optical-coherence tomography (FDOCT).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical analyses of x-ray diffraction phase contrast imaging and near field phase retrieval method are presented. A new variant of the near field intensity distribution is derived with the optimal phase imaging distance and spatial frequency of object taken into account. Numerical examples of phase retrieval using simulated data are also given. On the above basis, the influence of detecting distance and polychroism of radiation on the phase contrast image and the retrieved phase distribution are discussed. The present results should be useful in the practical application of in-line phase contrast imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical model of direct diffraction phase-contrast imaging with partially coherent x-ray source is expressed by an operator of multiple integral. It is presented that the integral operator is linear. The problem of its phase retrieval is described by solving an operator equation of multiple integral. It is demonstrated that the solution of the phase retrieval is unstable. The numerical simulation is performed and the result validates that the solution of the phase retrieval is unstable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-step phase-retrieval method, based on Fourier-transform ghost imaging, was demonstrated. For the complex objects, the phase-retrieval process was divided into two steps: first got the complex object's amplitude from the Fourier-transform patterns of the squared object function, then combining with the Fourier-transform patterns of the object function to get the phase. The theoretical basis of this technique is outlined, and the experimental results are presented. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental setup to measure the three-dimensional phase-intensity distribution of an infrared laser beam in the focal region has been presented. It is based on the knife-edge method to perform a tomographic reconstruction and on a transport of intensity equation-based numerical method to obtain the propagating wavefront. This experimental approach allows us to characterize a focalized laser beam when the use of image or interferometer arrangements is not possible. Thus, we have recovered intensity and phase of an aberrated beam dominated by astigmatism. The phase evolution is fully consistent with that of the beam intensity along the optical axis. Moreover, this method is based on an expansion on both the irradiance and the phase information in a series of Zernike polynomials. We have described guidelines to choose a proper set of these polynomials depending on the experimental conditions and showed that, by abiding these criteria, numerical errors can be reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compressed covariance sensing using quadratic samplers is gaining increasing interest in recent literature. Covariance matrix often plays the role of a sufficient statistic in many signal and information processing tasks. However, owing to the large dimension of the data, it may become necessary to obtain a compressed sketch of the high dimensional covariance matrix to reduce the associated storage and communication costs. Nested sampling has been proposed in the past as an efficient sub-Nyquist sampling strategy that enables perfect reconstruction of the autocorrelation sequence of Wide-Sense Stationary (WSS) signals, as though it was sampled at the Nyquist rate. The key idea behind nested sampling is to exploit properties of the difference set that naturally arises in quadratic measurement model associated with covariance compression. In this thesis, we will focus on developing novel versions of nested sampling for low rank Toeplitz covariance estimation, and phase retrieval, where the latter problem finds many applications in high resolution optical imaging, X-ray crystallography and molecular imaging. The problem of low rank compressive Toeplitz covariance estimation is first shown to be fundamentally related to that of line spectrum recovery. In absence if noise, this connection can be exploited to develop a particular kind of sampler called the Generalized Nested Sampler (GNS), that can achieve optimal compression rates. In presence of bounded noise, we develop a regularization-free algorithm that provably leads to stable recovery of the high dimensional Toeplitz matrix from its order-wise minimal sketch acquired using a GNS. Contrary to existing TV-norm and nuclear norm based reconstruction algorithms, our technique does not use any tuning parameters, which can be of great practical value. The idea of nested sampling idea also finds a surprising use in the problem of phase retrieval, which has been of great interest in recent times for its convex formulation via PhaseLift, By using another modified version of nested sampling, namely the Partial Nested Fourier Sampler (PNFS), we show that with probability one, it is possible to achieve a certain conjectured lower bound on the necessary measurement size. Moreover, for sparse data, an l1 minimization based algorithm is proposed that can lead to stable phase retrieval using order-wise minimal number of measurements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spurious reflection is one of the troublesome problems in phase-shifting interferometry. This paper deals with the problem on the basis of a two-run-times-two-frame phase-shift algorithm, in which the phase shifts are shared out between the reference beam and the object beam. The effect of spurious reflection on phase measurement is investigated; two simple methods for removal of the effect are presented and each needs only six interferograms. Two other solutions to the spurious reflection problem are also reviewed. The simulation results obtained using these four solutions are compared. The influence of a mix of phase-shifter miscalibration and spurious reflection on phase measurement is also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A four-frame phase shift method and an associated algorithm using unequal phase steps are presented. The unique advantage of this method is that it becomes insensitive to phase shifter nonlinearity because of the performance of a special procedure, in which the phase shifts are shared out between the reference beam and the object beam. By this means, any phase shifter can work as long as one phase shift is accurately known. On the basis of the technique, a simple calibration method for the linear phase shifter is suggested. The influences of phase shifter miscalibration, detector nonlinearity and random noise on the algorithm are investigated, and the optimal phase shifts are given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We address the problem of reconstructing a sparse signal from its DFT magnitude. We refer to this problem as the sparse phase retrieval (SPR) problem, which finds applications in tomography, digital holography, electron microscopy, etc. We develop a Fienup-type iterative algorithm, referred to as the Max-K algorithm, to enforce sparsity and successively refine the estimate of phase. We show that the Max-K algorithm possesses Cauchy convergence properties under certain conditions, that is, the MSE of reconstruction does not increase with iterations. We also formulate the problem of SPR as a feasibility problem, where the goal is to find a signal that is sparse in a known basis and whose Fourier transform magnitude is consistent with the measurement. Subsequently, we interpret the Max-K algorithm as alternating projections onto the object-domain and measurement-domain constraint sets and generalize it to a parameterized relaxation, known as the relaxed averaged alternating reflections (RAAR) algorithm. On the application front, we work with measurements acquired using a frequency-domain optical-coherence tomography (FDOCT) experimental setup. Experimental results on measured data show that the proposed algorithms exhibit good reconstruction performance compared with the direct inversion technique, homomorphic technique, and the classical Fienup algorithm without sparsity constraint; specifically, the autocorrelation artifacts and background noise are suppressed to a significant extent. We also demonstrate that the RAAR algorithm offers a broader framework for FDOCT reconstruction, of which the direct inversion technique and the proposed Max-K algorithm become special instances corresponding to specific values of the relaxation parameter.