887 resultados para periodic microstructures
Resumo:
We report on an optical interference method for transferring periodic microstructures of metal film from a supporting substrate to a receiving substrate by means of five-beam interference of femtosecond laser pulses. Scanning electron microscopy and optical microscopy revealed microstructures with micrometer-order were transferred to the receiving substrate. In the meanwhile, a negative copy of the transferred structures was induced in the metal film on the supporting substrate. The diffraction characteristics of the transferred structures were also evaluated. The present technique allows one-step realization of functional optoelectronic devices. (C) 2005 Optical Society of America.
Resumo:
For steady-state heat conduction a new variational functional for a unit cell of composites with periodic microstructures is constructed by considering the quasi-periodicity of the temperature field and in the periodicity of the heat flux fields. Then by combining with the eigenfunction expansion of complex potential which satisfies the fiber-matrix interface conditions, an eigenfunction expansion-variational method (EEVM) based on a unit cell is developed. The effective transverse thermal conductivities of doubly-periodic fiber reinforced composites are calculated, and the first-order approximation formula for the square and hexagonal arrays is presented,which is convenient for engineering application. The numerical results show a good convergency of the presented method, even through the fiber volume fraction is relatively high. Comparisons with the existing analytical and experimental results are made to demonstrate the accuracy and validity of the first-order approximation formula for the hexagonal array.
Resumo:
通过纳焦量级的飞秒激光在铬膜表面诱导出了周期性微结构,并使用入射飞秒激光和激发的表面等离子体波之间的干涉理论模拟分析了飞秒激光作用下铬膜表面的温度场分布情况,定性地解释了铬膜表面周期性微结构产生的机理。实验和理论结果有助于对飞秒激光和铬膜相互作用机制的理解。
Resumo:
We have observed periodically aligned nanovoid structures inside a conventional borosilicate glass induced by a single femtosecond (fs) laser beam for the first time, to our knowledge. The spherical voids of nanosized diameter were aligned spontaneously with a period along the propagation direction of the laser beam. The period, the number of voids, and the whole length of the aligned void structure were controlled by changing the laser power, the pulse number, and the position of the focal point.
Resumo:
Microstructures and mechanical properties of the Mg-7Y-4Gd-xZn-0.4Zr (x = 0.5, 1.5, 3, and 5 wt.%) alloys in the as-cast, as-extruded, and peak-aged conditions have been investigated by using optical microscopy, scanning electron microscope, X-ray diffraction, and transmission electron microscopy. It is found that the peak-aged Mg-7Y-4Gd-1.5Zn-0.4Zr alloys have the highest strength after aging at 220 A degrees C. The highest ultimate tensile strength and yield tensile strength are 418 and 320 MPa, respectively. The addition of 1.5 wt.% Zn to the based alloys results in a greater aging effect and better mechanical properties at both room and elevated temperatures. The improved mechanical properties are mainly ascribed to both a fine beta' phase and a long periodic stacking-ordered structure, which coexist together in the peak-aged alloys.
Resumo:
A relative approach, based on the dynamic density functional theory, for simulating the solvent evaporation rate dependence of self-assembly process of block copolymers in solution is proposed. The di- and triblock copolymers are first chosen as the candidates for exploration of novel microstructures. The results reveal that asymmetrical block copolymers with unequal block length, which generally exhibit disordered microdomain patterns in melts, have the ability to assemble into periodic ordered microdomain patterns by properly controlling solvent evaporation rate, e.g., diblock copolymers may assemble into lamellar microstructures with lamellar thickness proportional to individual block length. This simulation suggests a strategy of design and manufacture of polymeric nanomaterials with novel microstructures.
Resumo:
Long-term loss of soil C stocks under conventional tillage and accrual of soil C following adoption of no-tillage have been well documented. No-tillage use is spreading, but it is common to occasionally till within a no-till regime or to regularly alternate between till and no-till practices within a rotation of different crops. Short-term studies indicate that substantial amounts of C can be lost from the soil immediately following a tillage event, but there are few field studies that have investigated the impact of infrequent tillage on soil C stocks. How much of the C sequestered under no-tillage is likely to be lost if the soil is tilled? What are the longer-term impacts of continued infrequent no-tillage? If producers are to be compensated for sequestering C in soil following adoption of conservation tillage practices, the impacts of infrequent tillage need to be quantified. A few studies have examined the short-term impacts of tillage on soil C and several have investigated the impacts of adoption of continuous no-tillage. We present: (1) results from a modeling study carried out to address these questions more broadly than the published literature allows, (2) a review of the literature examining the short-term impacts of tillage on soil C, (3) a review of published studies on the physical impacts of tillage and (4) a synthesis of these components to assess how infrequent tillage impacts soil C stocks and how changes in tillage frequency could impact soil C stocks and C sequestration. Results indicate that soil C declines significantly following even one tillage event (1-11 % of soil C lost). Longer-term losses increase as frequency of tillage increases. Model analyses indicate that cultivating and ripping are less disruptive than moldboard plowing, and soil C for those treatments average just 6% less than continuous NT compared to 27% less for CT. Most (80%) of the soil C gains of NT can be realized with NT coupled with biannual cultivating or ripping. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Popular wireless network standards, such as IEEE 802.11/15/16, are increasingly adopted in real-time control systems. However, they are not designed for real-time applications. Therefore, the performance of such wireless networks needs to be carefully evaluated before the systems are implemented and deployed. While efforts have been made to model general wireless networks with completely random traffic generation, there is a lack of theoretical investigations into the modelling of wireless networks with periodic real-time traffic. Considering the widely used IEEE 802.11 standard, with the focus on its distributed coordination function (DCF), for soft-real-time control applications, this paper develops an analytical Markov model to quantitatively evaluate the network quality-of-service (QoS) performance in periodic real-time traffic environments. Performance indices to be evaluated include throughput capacity, transmission delay and packet loss ratio, which are crucial for real-time QoS guarantee in real-time control applications. They are derived under the critical real-time traffic condition, which is formally defined in this paper to characterize the marginal satisfaction of real-time performance constraints.
Resumo:
The heat transfer through the attics of buildings under realistic thermal forcing has been considered in this study. A periodic temperature boundary condition is applied on the sloping walls of the attic to show the basic flow features in the attic space over diurnal cycles. The numerical results reveal that, during the daytime heating stage, the flow in the attic space is stratified; whereas at the night-time cooling stage, the flow becomes unstable. A symmetrical solution is seen for relatively low Rayleigh numbers. However, as the Ra gradually increases, a transition occurs at a critical value of Ra. Above this critical value, an asymmetrical solution exhibiting a pitchfork bifurcation arises at the night-time. It is also found that the calculated heat transfer rate at the night-time cooling stage is much higher than that during the daytime heating stage.
Resumo:
The effects of periodic thermal forcing on the flow field and heat transfer through an attic space are examined numerically in this paper. We consider the case with a fixed aspect ratio of 0.5 and a fixed Grashof number of 1.33×106. The numerical results reveal that, during the daytime, the flow is stratified; whereas at the night-time, the flow becomes unstable. A number of regular plumes and vortices are observed in the contours of isotherms and stream functions respectively. Moreover, the flow appears to be symmetric during the daytime, and becomes asymmetric at the night-time. It is also found that the flow is weaker during the daytime than that at the night-time in the present case, and the calculated heat transfer rate at the night-time is approximately three times greater than the heat transfer rate during the daytime.
Resumo:
This paper presents a guidance approach for aircraft in periodic inspection tasks. The periodic inspection task involves flying to a series of desired fixed points of inspection with specified attitude requirements so that requirements for downward looking sensors, such as cameras, are achieved. We present a solution using a precision guidance law and a bank turn dynamics model. High fidelity simulation studies illustrate the effectiveness of this approach under both ideal (nil-wind) and non-ideal (wind) conditions.