954 resultados para perfusion-weighted MRI
Resumo:
Diffusion- and perfusion-weighted magnetic resonance imaging provides important pathophysiological information in acute bra-in ischemia. We performed a prospective study in 19 sub-6-hour stroke patients using serial diffusion- and perfusion-weighted imaging before intravenous thrombolysis, with repeat studies, both subacutely and at outcome. For comparison of ischemic lesion evolution and clinical outcome, we used a historical control group of 21 sub-6-hour ischemic stroke patients studied serially with diffusion- and perfusion-weighted imaging. The two groups were well matched for the baseline National Institutes of Health Stroke Scale and magnetic resonance parameters. Perfusion-weighted imaging-diffusion-weighted imaging mismatch was present in 16 of 19 patients treated with tissue plasminogen activator, and 16 of 21 controls. Perfusion-weighted imaging-diffusion-weighted imaging mismatch patients treated with tissue plaminogen activator had higher recanalization rates and enhanced reperfusion at day 3 (81% vs 47% in controls), and a greater proportion of severely hypoperfused acute mismatch tissue not progressing to infarction (82% vs -25% in controls). Despite similar baseline diffusion-weighted imaging lesions, infarct expansion was less in the recombinant tissue plaminogen activator group (14cm(3) vs 56cm(3) in controls). The positive effect of thrombolysis on lesion growth in mismatch patients translated into a greater improvement in baseline to outcome National Institutes of Health Stroke Scale in the group treated with recombinant tissue plaminogen activator, and a significantly larger proportion of patients treated with recombinant tissue plaminogen activator having a clinically meaningful improvement in National Institutes of Health Stroke Scale of;2:7 points. The natural evolution of acute perfusion-weighted imaging-diffusion-weighted imaging mismatch tissue may be altered by thrombolysis, with improved stroke outcome. This has implications for the use of diffusion- and perfusion-weighted imaging in selecting and monitoring patients for thrombolytic therapy.
Resumo:
Cerebral perfusion-weighted imaging (PWI) in neonates is known to be technically difficult and there are very few published studies on its use in preterm infants. In this paper, we describe one convenient method to perform PWI in neonates, a method only recently used in newborns. A device was used to manually inject gadolinium contrast material intravenously in an easy, quick and reproducible way. We studied 28 newborn infants, with various gestational ages and weights, including both normal infants and those suffering from different brain pathologies. A signal intensity-time curve was obtained for each infant, allowing us to build perfusion maps. This technique offered a fast and easy method to manually inject a bolus gadolinium contrast material, which is essential in performing PWI in neonates. Cerebral PWI is technically feasible and reproducible in neonates of various gestational age and with various pathologies.
Resumo:
Carotid artery stenosis due to arteriosclerosis increases the risk of cerebral ischemia via embolic phenomena or reduced blood flow. The changes in cerebral perfusion that may occur after treatment are not clearly understood. This study evaluated the changes in cerebral microcirculation following carotid angioplasty with stenting (CAS) under cerebral protection with filters using ultrafast gradient echo (GRE) perfusion weighted imaging (PWI) with magnetic resonance imaging (MRI). Prospectively, 21 cervical carotid stenosis patients, mean age 69.95 years, underwent MRI 12 h before and 72 h after CAS. PWI parameters were collected for statistical analysis: cerebral blood volume (CB V), mean transit time (MTT) and time to peak (TTP). Statistical analysis was applied to absolute parameters and to values normalized against those from the contralateral parenchyma. The main finding of this study was improved hemodynamics for the normalized data after CAS, shown by reduced MTT (p<0.001) and TTP (p=0.019) in the territory fed by the middle cerebral artery ipsilateral to the CAS. Absolute data showed increased blood volume in the cerebral hemispheres after CAS, which was more accentuated on the stent side (p=0.016) than the contralateral side (p=0.029). Early improvements in cerebral perfusion, mainly seen in the normalized data, were clearly demonstrated in the timing parameters - TTP & MTT - after CAS.
Resumo:
the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) was a prospective, randomized, double-blinded, placebo-controlled, phase II trial of alteplase between 3 and 6 hours after stroke onset. The primary outcome of infarct growth attenuation on MRI with alteplase in mismatch patients was negative when mismatch volumes were assessed volumetrically, without coregistration, which underestimates mismatch volumes. We hypothesized that assessing the extent of mismatch by coregistration of perfusion and diffusion MRI maps may more accurately allow the effects of alteplase vs placebo to be evaluated.
Resumo:
We aimed to examine different intratumoral changes after single-dose and fractionated radiotherapy, using diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in a rat rhabdomyosarcoma model. Four WAG/Rij rats with rhabdomyosarcomas in the flanks received single-dose radiotherapy of 8 Gy, and four others underwent fractionated radiotherapy (five times 3 Gy). In rats receiving single-dose radiotherapy, a significant perfusion decrease was found in the first 2 days post-treatment, with slow recuperation afterwards. No substantial diffusion changes could be seen; tumor growth delay was 12 days. The rats undergoing fractionated radiotherapy showed a similar perfusion decrease early after the treatment. However, a very strong increase in apparent diffusion coefficient occurred in the first 10 days; growth delay was 18 days. DW-MRI and DCE-MRI can be used to show early tumoral changes induced by radiotherapy. Single-dose and fractionated radiotherapy induce an immediate perfusion effect, while the latter induces more intratumoral necrosis.
Resumo:
PURPOSE: To report the diffusion-weighted MRI findings in alveolar echinococcosis (AE) of the liver and evaluate the potential role of apparent diffusion coefficients (ADCs) in the characterisation of lesions. MATERIALS AND METHODS: We retrospectively included 22 patients with 63 AE liver lesions (≥1cm), examined with 3-T liver MRI, including a free-breathing diffusion-weighted single-shot echo-planar imaging sequence (b-values=50, 300 and 600s/mm(2)). Two radiologists jointly assessed the following lesion features: size, location, presence of cystic and/or solid components (according to Kodama's classification system), relative contrast enhancement, and calcifications (on CT). The ADCtotal, ADCmin and ADCmax were measured in each lesion and the surrounding liver parenchyma. RESULTS: Three type 1, 19 type 2, 17 type 3, three type 4 and 21 type 5 lesions were identified. The mean (±SD) ADCtotal, ADCmin and ADCmax for all lesions were 1.73±0.50, 0.76±0.38 and 2.63±0.76×10(-3)mm(2)/s, respectively. The mean ADCtotal for type 1, type 2, type 3, type 4 and type 5 lesions were 1.97±1.01, 1.76±0.53, 1.73±0.41, 1.15±0.42 and 1.76±0.44×10(-3)mm(2)/s, respectively. No significant differences were found between the five lesion types, except for type 4 (p=0.0363). There was a significant correlation between the presence of a solid component and low ADCmin (r=0.39, p=0.0016), whereas an inverse correlation was found between the relative contrast enhancement and ADCtotal (r=-0.34, p=0.0072). CONCLUSION: The ADCs of AE lesions are relatively low compared to other cystic liver lesions, which may help in the differential diagnosis. Although ADCs are of little use to distinguish between the five lesion types, their low value reflects the underlying solid component.
Resumo:
Precise focusing is essential for transcranial MRI-guided focused ultrasound (TcMRgFUS) to minimize collateral damage to non-diseased tissues and to achieve temperatures capable of inducing coagulative necrosis at acceptable power deposition levels. CT is usually used for this refocusing but requires a separate study (CT) ahead of the TcMRgFUS procedure. The goal of this study was to determine whether MRI using an appropriate sequence would be a viable alternative to CT for planning ultrasound refocusing in TcMRgFUS. We tested three MRI pulse sequences (3D T1 weighted 3D volume interpolated breath hold examination (VIBE), proton density weighted 3D sampling perfection with applications optimized contrasts using different flip angle evolution and 3D true fast imaging with steady state precision T2-weighted imaging) on patients who have already had a CT scan performed. We made detailed measurements of the calvarial structure based on the MRI data and compared those so-called 'virtual CT' to detailed measurements of the calvarial structure based on the CT data, used as a reference standard. We then loaded both standard and virtual CT in a TcMRgFUS device and compared the calculated phase correction values, as well as the temperature elevation in a phantom. A series of Bland-Altman measurement agreement analyses showed T1 3D VIBE as the optimal MRI sequence, with respect to minimizing the measurement discrepancy between the MRI derived total skull thickness measurement and the CT derived total skull thickness measurement (mean measurement discrepancy: 0.025; 95% CL (-0.22-0.27); p = 0.825). The T1-weighted sequence was also optimal in estimating skull CT density and skull layer thickness. The mean difference between the phase shifts calculated with the standard CT and the virtual CT reconstructed from the T1 dataset was 0.08 ± 1.2 rad on patients and 0.1 ± 0.9 rad on phantom. Compared to the real CT, the MR-based correction showed a 1 °C drop on the maximum temperature elevation in the phantom (7% relative drop). Without any correction, the maximum temperature was down 6 °C (43% relative drop). We have developed an approach that allows for a reconstruction of a virtual CT dataset from MRI to perform phase correction in TcMRgFUS.
Resumo:
Purpose: To evaluate the clinical potential of diffusion-weighted MR imaging with apparent diffusion coefficient (ADC) mapping for the assessment of gastrointestinal stromal tumor (GIST) response to targeted therapy in comparison with 18F-FDG PET/CT. Methods and materials: Five patients (3W/2M, aged 56 ± 13 y) with metastatic GIST underwent both a 18F-FDG PET/CT (Discovery LS, GE Healthcare) and a MRI (VIBE T1 Gd, DWI [b = 50,300,600] and ADC mapping) before and after change in therapy. Exams were first analyzed blindly, then PET/CT images were coregistered to T1 Gd MR images for lesion detection. SUVmax and ADC were measured for the six largest lesions on MRI. The relationship between SUVmax and ADC was analyzed using Spearman's correlation. Results: Altogether, 24 lesions (15 hepatic and 9 non-hepatic) were analyzed on both modalities. Three PET/CT lesions (12.5%) were initially not considered on ADC and 4 lesions on the second PET/CT were excluded because of hepatic vascular activity spillover. SUVmax decreased from 7.2 ± 7.7 g/mL to 5.9 ± 5.9 g/mL (P = 0.53) and ADC increased from 1.2x10-3 mm2/s ± 0.4 to 1.4x10-3 mm2/s ± 0.4 (P = 0.07). There was a significant association between SUVmax decrease and ADC increase (rho= -0.64, P = 0.004). Conclusion: Changes in ADC from diffusion-weighted MRI reflect response of 18F-FDG-avid GIST to therapy. The exact diagnostic value of DWI needs to be investigated further, as well as the effect of lesion size and time under therapy before imaging. Furthermore, the proven association between SUVmax and ADC may be useful for the assessment of treatment response in 18F-FDG non-avid GIST.
Resumo:
Purpose: To evaluate the clinical potential of diffusion-weighted MR imaging with apparent diffusion coefficient (ADC) mapping for the assessment of gastrointestinal stromal tumour (GIST) response to targeted therapy in comparison with 18F-FDG PET/CT Methods and Materials: Five patients (3 W/2M, aged 56±13 y) with metastatic GIST underwent both a 18F-FDG PET/CT (Discovery LS, GE Healthcare) and a MRI (VIBE T1 Gd, DWI [b = 50,300,600] and ADC mapping) before and after change in therapy. Exams were first analysed blindly and then PET/CT images were coregistered to T1 Gd MR images for lesion detection. SUVmax and ADC were measured for the six largest lesions on MRI. The relationship between SUVmax and ADC was analysed using Spearman's correlation. Results: Altogether, 24 lesions (15 hepatic and 9 non-hepatic) were analysed on both modalities. Three PET/CT lesions (12.5%) were initially not considered on ADC and 4 lesions on the second PET/CT were excluded because of hepatic vascular activity spillover. SUVmax decreased from 7.2±7.7 g/mL to 5.9±5.9 g/mL (P = 0.53) and ADC increased from 1.2x10-3 mm2/s ± 0.4 to 1.4x10-3 mm2/s ± 0.4 (P = 0.07). There was a significant association between SUVmax decrease and ADC increase (rho= -0.64, P = 0.004). Conclusion: Changes in ADC from diffusion-weighted MRI reflect response of 18F-FDG-avid GIST to therapy. The exact diagnostic value of DWI needs to be investigated further, as well as the effect of lesion size and time under therapy before imaging. Furthermore, the proven association between SUVmax and ADC may be useful for the assessment of treatment response in 18F-FDG non-avid GIST.
Resumo:
In this paper we address the "skull-stripping" problem in 3D MR images. We propose a new method that employs an efficient and unique histogram analysis. A fundamental component of this analysis is an algorithm for partitioning a histogram based on the position of the maximum deviation from a Gaussian fit. In our experiments we use a comprehensive image database, including both synthetic and real MRI. and compare our method with other two well-known methods, namely BSE and BET. For all datasets we achieved superior results. Our method is also highly independent of parameter tuning and very robust across considerable variations of noise ratio.
Resumo:
An imaging biomarker that would provide for an early quantitative metric of clinical treatment response in cancer patients would provide for a paradigm shift in cancer care. Currently, nonimage based clinical outcome metrics include morphology, clinical, and laboratory parameters, however, these are obtained relatively late following treatment. Diffusion-weighted MRI (DW-MRI) holds promise for use as a cancer treatment response biomarker as it is sensitive to macromolecular and microstructural changes which can occur at the cellular level earlier than anatomical changes during therapy. Studies have shown that successful treatment of many tumor types can be detected using DW-MRI as an early increase in the apparent diffusion coefficient (ADC) values. Additionally, low pretreatment ADC values of various tumors are often predictive of better outcome. These capabilities, once validated, could provide for an important opportunity to individualize therapy thereby minimizing unnecessary systemic toxicity associated with ineffective therapies with the additional advantage of improving overall patient health care and associated costs. In this report, we provide a brief technical overview of DW-MRI acquisition protocols, quantitative image analysis approaches and review studies which have implemented DW-MRI for the purpose of early prediction of cancer treatment response.
Resumo:
Extracranial application of diffusion-weighted magnetic resonance imaging (MRI) has gained increasing importance in recent years. As a result of technical advances, this new non-invasive functional technique has also been applied in head and neck radiology for several clinical indications. In cancer imaging, diffusion-weighted MRI can be performed for tumour detection and characterization, monitoring of treatment response as well as the differentiation of recurrence and post-therapeutic changes after radiotherapy. Even for lymph node staging promising results have been reported recently. This review article provides overview of potential applications of diffusion-weighted MRI in head and neck with the main focus on its applications in oncology.