961 resultados para parasite antigen
Resumo:
The results presented in this review summarize a seirs of experiments designed to characterize the murine T cell imune response to the protozoan parasite Leishmania tropica. Enriched T cell populations and T cell clones specific for L. tropica antigens were derived from lymph nodes of primed mice and maintained in continous culture in vitro. These T lymphocytes were shown (A) to express the Lyt 1+ 3- cell surface phenotype, (B) to proliferate specifically in vitro in response to parasite antigens, together with a source of irradiated syngeneic macrophages, (C) to transfer antigen-specific delayed-type hypersensitivity (DTH) responses to normal syngeneic mice, (D) to induce specific activation of parasitized macrophages in vitro resulting in the destruction of intracellular parasites, (E) to provide specific helper activity for antibody responses in vitro in a hapten-carrier system. Protection studies using these defiened T cell populations should allow the characterization of parasite antigen(s) implicated in the induction of cellular immune responses beneficial for the host.
Resumo:
Considering the potential role of macrophage migration inhibitory factor (MIF) in the inflammation process in placenta when infected by pathogens, we investigated the production of this cytokine in chorionic villous explants obtained from human first-trimester placentas stimulated with soluble antigen from Toxoplasma gondii (STAg). Parallel cultures were performed with villous explants stimulated with STAB, interferon-gamma (IFN-gamma), or STAB plus IFN-gamma. To assess the role of placental MIF on monocyte adhesiveness to human trophoblast, explants were co-cultured with human myelomonocytic THP-1 cells in the presence or absence of supernatant from cultures treated with STAB (SPN), SPN plus anti-MIF antibodies, or recombinant MIF. A significantly higher concentration of MIF was produced and secreted by villous explants treated with STAB or STAB plus IFN-gamma after 24-hour culture. Addition of SPN or recombinant MIF was able to increase THP-1 adhesion, which was inhibited after treatment with anti-MIF antibodies. This phenomenon was associated with intercellular adhesion molecule expression by villous explants. Considering that the processes leading to vertical dissemination of T. gondii remain widely unknown, our results demonstrate that MIF production by human first-trimester placenta is up-regulated by parasite antigen and may play an essential role as an autocrine/paracrine mediator in placental infection by T. gondii.
Resumo:
Equine recurrent airway obstruction (RAO) is an inflammatory, obstructive airway disease induced by exposure of susceptible horses to inhaled organic dust particles. The immunological process underlying RAO is still unclear. Previous studies have shown that RAO is linked to the Interleukin-4 receptor (IL-4R) gene in one Warmblood family (F1), but not in another (F2). It has also been shown that in F1, but not in F2, RAO is associated with resistance against parasites, suggesting that this association may have an immuno-genetic basis. Therefore, we hypothesized that the T helper (h)1/Th2/regulatory (Treg) cytokine profiles of RAO-associated antigen- and parasite-antigen-stimulated peripheral blood mononuclear cells (PBMC) differ between RAO-affected and healthy horses depending on their genetic background. In our study, PBMC from 17 RAO-affected and 14 healthy control horses of F1 and F2 were stimulated for 24h with antigens relevant to RAO [hay dust extract (HDE), Aspergillus fumigatus extract (AFE) and lipopolysaccharids (LPS)]; cyathostomin extract (CE) and recombinant cyathostomin antigen (RCA) or with concanavalin A (ConA). Total mRNA levels of IL-4, IL-4R, IL-13, interferon (INF)-γ and IL-10 were examined by qRT-PCR. Stimulation with either HDE or RCA resulted in significant differences in IL-4R mRNA levels between RAO-affected and control horses in F1, but not in F2. For IL-10 mRNA expression, a significant difference between RAO-affected and control horses in F1 but not in F2 was observed only following stimulation with HDE. In contrast to HDE, stimulation with CE resulted in a significant difference of IL-10 mRNA expression level between RAO-affected horses of F2 and healthy horses of F1. No significant differences were detected upon stimulation with any of the other challenge agents. These findings indicate that the immunological response, specifically IL-4R expression, in response to hay dust and cyathostomin antigens, differs between RAO-affected and healthy horses depending on their genetic background. This study shows that analysis of PBMC reveals systemic changes associated with RAO and helps to elucidate immunological pathways involved in this disease.
Resumo:
Biomphalaria glabrata can react through different pathways to Schistosoma mansoni miracidium penetration, according to the degree of resistance/susceptibility presented by different snail strains, which is a genetically determined character, resistance being the dominant feature. However, it has been observed that previous susceptible snail strain may change its reactive behavior along the course of infection, exhibiting later a pattern of cercarial shedding and histopatopathological picture compatible with high resistance. Such observation suggests the possibility of B. glabrata to develop a sort of adaptative immunity face a schistosome infection. To explore on this aspect, the present investigation looked for the behavior of S. mansoni infection in B. glabrata previously subjected to different means of artificial stimulation of its internal defense system. Snails previously inoculated with irradiated miracídia (Group I); treated with S. mansoni antigens (Group II) or with a non-related parasite antigen (Group III) were challenged with 20 viable S. mansoni miracidia, and later looked for cercarial shedding and histopathologic changes at different times from exposition. Nodules of hemocyte accumulations were found at the site of antigen injection. These nodules resembled solid granulomas, and were larger and more frequent in snails injected with S. mansoni products as compared to those injected with Capillaria hepatica. However, the presence of such granulomas did not avoid the S. mansoni challenge infection from developing in a similar way as that seen in controls. The data are indicative that hemocytes are able to proliferate locally when stimulated, such capacity also remaining localized, not being shared by the population of hemocytes located elsewhere within the snail body.
Resumo:
Visceral leishmaniasis in Brazil is caused by Leishmania (Leishmania) chagasi and the dog is its most important reservoir. The clinical features in dogs include loss of weight, lymphadenopathy, renal failure, skin lesions, fever, hypergammaglobulinemia, hepatosplenomegaly, anemia, and, rarely, neurological symptoms. Most infected animals develop active disease, characterized by high anti-leishmania antibody titers and depressed lymphoproliferative ability. Antibody production is not primarily important for protection but might be involved in the pathogenesis of tissue lesions. An ELISA test was used to determine if there is an association between neurological symptoms and the presence of anti-L. chagasi antibodies in cerebrospinal fluid (CSF). Thirty serum and CSF samples from symptomatic mixed breed dogs (three with neurological symptoms) from a region of high incidence of visceral leishmaniasis in Brazil were examined for antibody using total parasite antigen and anti-dog IgG peroxidase conjugate. A high level of L. chagasi antibodies was observed in sera (mean absorbance ± SD, 1.939 ± 0.405; negative control, N = 20, 0.154 ± 0.074) and CSF (1.571 ± 0.532; negative control, N = 10, 0.0195 ± 0.040) from all animals studied. This observation suggests that L. chagasi can cause breakdown of filtration barriers and the transfer of antibodies and antigens from the blood to the CSF compartment. No correlation was observed between antibody titer in CSF and neurological symptoms.
Resumo:
Visceral leishmaniasis in Brazil is caused by Leishmania (Leishmania) chagasi and the dog is its most important reservoir. The clinical features in dogs include loss of weight, lymphadenopathy, renal failure, skin lesions, fever, hypergammaglobulinemia, hepatosplenomegaly, anemia, and, rarely, neurological symptoms. Most infected animals develop active disease, characterized by high anti-leishmania antibody titers and depressed lymphoproliferative ability. Antibody production is not primarily important for protection but might be involved in the pathogenesis of tissue lesions. An ELISA test was used to determine if there is an association between neurological symptoms and the presence of anti-L. chagasi antibodies in cerebrospinal fluid (CSF). Thirty serum and CSF samples from symptomatic mixed breed dogs (three with neurological symptoms) from a region of high incidence of visceral leishmaniasis in Brazil were examined for antibody using total parasite antigen and anti-dog IgG peroxidase conjugate. A high level of L. chagasi antibodies was observed in sera (mean absorbance ± SD, 1.939 ± 0.405; negative control, N = 20, 0.154 ± 0.074) and CSF (1.571 ± 0.532; negative control, N = 10, 0.0195 ± 0.040) from all animals studied. This observation suggests that L. chagasi can cause breakdown of filtration barriers and the transfer of antibodies and antigens from the blood to the CSF compartment. No correlation was observed between antibody titer in CSF and neurological symptoms.
In vivo transfer of delayed hypersensitivity to Trypanosoma cruzi antigens with polysomal immune RNA
Resumo:
Most parasite-host relationships are characterized by the development of resistance by the host, thus limiting the number of parasites. However, some cases are very unusual. In the relationship of the domestic dog with the brown dog-tick Rhipicephalus sanguineus this does not occur, whereas guinea pigs develop efficient resistance. Sera from domestic dogs, crab-eating foxes and guinea pigs collected before and after infestation with R. sanguineus ticks, and after immunization with a whole tick adult or larval homogenate, were used in Western blot analysis to compare and identify potential important antigens from a tick larval homogenate. The same sera were tested in an indirect immunohistochemistry assay in an attempt to compare relevant antigenic sites on histological tick sections. The immunoblotting displayed antigens recognized only by the guinea pigs, as well as several shared antigens between host species, depending on the kind of immunization. Immunohistochemistry revealed probable antigenic sites on the cells and tissues of ticks, which varied depending on the kind of immunization (infestation or vaccination) and the animal species involved.
Resumo:
Visceral larva migrans (VLM) is a clinical syndrome caused by infection of man by Toxocara spp, the common roundworm of dogs and cats. Tissue migration of larval stages causes illness specially in children. Because larvae are difficult to detect in tissues, diagnosis is mostly based on serology. After the introduction of the enzyme-linked immunosorbent assay (ELISA) using the larval excretory-secretory antigen of T. canis (TES), the diagnosis specificity was greatly improved although cross-reactivity with other helminths are still being reported. In Brazil, diagnosis is routinely made after absorption of serum samples with Ascaris suum antigens, a nematode antigenicaly related with Ascaris lumbricoides which is a common intestinal nematode of children. In order to identify T. canis antigens that cross react to A. suum antigens we analyzed TES antigen by SDS-PAGE and Western blotting techniques. When we used serum samples from patients suspected of VLM and positive result by ELISA as well as a reference serum sample numerous bands were seen (molecular weight of 210-200 kDa, 116-97 kDa, 55-50 kDa and 35-29 kDa). Among these there is at least one band with molecular weight around 55-66 kDa that seem to be responsible for the cross-reactivity between T. canis and A. suum once it disappears when previous absorption of serum samples with A. suum antigens is performed.
Resumo:
Giardia duodenalis isolates from asymptomatic or symptomatic patients and from animals present similarities and differences in the protein composition, antigenic profile, pattern of proteases and isoenzymes, as well as in nucleic acids analysis. In the present overview, these differences and similarities are reviewed with emphasis in the host-parasite interplay and possible mechanisms of virulence of the protozoon.
Resumo:
Toxocariasis is caused by infection of man by Toxocara canis and Toxocara, cati larvae, the common roundworm of dogs and cats. Because larvae are difficult to detect in tissues, diagnosis is mostly based on serology. Non specific reactions are observed mainly due to cross-reactivity with Ascaris sp antigens. This investigation aimed at developing and evaluating an indirect antibody competition ELISA (IACE) employing a specific rabbit IgG anti-Toxocara canis excretory-secretory antigens as the competition antibody. in order to improve indirect ELISA specificity performed for toxocariasis diagnosis. For that, the rabbit IgG was previously absorbed by Ascaris suum adult antigens. Sensitivity and specificity of IACE were first evaluated in 28 serum samples of mice experimentally infected with T. canis embryonated eggs. Adopting cut-off value established in this population before infection, sensitivity and specificity were 100% after 20 days post-inoculation. For human population IACE was evaluated using sera from 440 patients with clinical signs of toxocariasis and the cut-off value was established with 60 serum samples from apparently healthy individuals. Using as reference test the indirect ELISA performed by Adolfo Lutz Institute, sensitivity was 60.2%, specificity was 98% and concordance was 77.3%. Repeatability of IACE was evaluated by the inter-reactions variation coefficient (2.4%).
Resumo:
Paired samples of cerebrospinal fluid (CSF) and serum of 30 patients - 10 with active, 10 with inactive neurocysticercosis (NCC), and 10 control subjects - were evaluated by enzyme-linked immunosorbent assay (ELISA) using two Taenia crassiceps metacestode extracts as antigen in order to detect IgG antibodies. In active NCC, high levels of IgG were detected (p < 0.05). The CSF samples showed 80% (CI 72-88) of reactivity in the saline extract (S) and 90% (CI 84-95) in sodium dodecyl sulphate (SDS) and the serum samples were reactive in 90% (CI 84-95) and 100% (CI 98-100) in the S and SDS antigenic extracts, respectively. The use of the paired samples of CSF and serum in active NCC showed equivalent results suggesting that the serum samples could be used as a screening in those patients whose CSF puncture is counter-indicated.
Resumo:
Epidemiological and experimental studies support the idea that helminth infections can induce a protective effect against the development of autoimmune and allergic diseases. In this study we characterized the immune response induced by Strongyloides venezuelensis infection in C57BL/6 mice and then evaluated the effect of a previous contact with this helminth in the outcome of type 1 diabetes. Animals were initially infected with 2000 L3 larvae from S. venezuelensis and euthanized 22. days later. An acute phase, identified by a high amount of eggs per gram of feces, was established between days 7 and 9 post-infection. Recovery from infection was associated with a Th2 polarized response characterized by a significant level of serum IgG1 specific antibodies and also a significant production of IL-5 and IL-10 by spleen cells stimulated with S. venezuelensis soluble antigen. Immunization with soluble S. venezuelensis antigen associated with complete Freund's adjuvant followed by infection with S. venezuelensis protected mice from diabetes development induced by streptozotocin. Protection was characterized by a higher body weight gain, lower glycemic levels, much less severe insulitis and preserved insulin production. Together, these results indicate that S. venezuelensis contributed to protect C57BL/6 mice against experimental diabetes induced by streptozotocin. © 2013 Elsevier Inc.
Resumo:
MHC class la-restricted CD8(+) T cells are important mediators of the adaptive immune response against infections caused by intracellular microorganisms. Whereas antigen-specific effector CD8(+) T cells can clear infection caused by intracellular pathogens, in some circumstances, the immune response is suboptimal and the microorganisms survive, causing host death or chronic infection. Here, we explored the cellular and molecular mechanisms that could explain why CD8(+) T-cell-mediated immunity during infection with the human protozoan parasite Trypanosoma cruzi is not optimal. For that purpose, we compared the CD8(+) T-cell mediated immune responses in mice infected with T. cruzi or vaccinated with a recombinant adenovirus expressing an immunodominant parasite antigen. Several functional and phenotypic characteristics of specific CD8(+) T cells overlapped. Among few exceptions was an accelerated expansion of the immune response in adenoviral vaccinated mice when compared to infected ones. Also, there was an upregulated expression of the apoptotic-signaling receptor CD95 on the surface of specific T cells from infected mice, which was not observed in the case of adenoviral-vaccinated mice. Most importantly, adenoviral vaccine provided at the time of infection significantly reduced the upregulation of CD95 expression and the proapoptotic phenotype of pathogen-specific CD8(+) cells expanded during infection. In parallel, infected adenovirus-vaccinated mice had a stronger CD8(+) T-cell mediated immune response and survived an otherwise lethal infection. We concluded that a suboptimal CD8(+) T-cell response is associated with an upregulation of CD95 expression and a proapoptotic phenotype. Both can be blocked by adenoviral vaccination.
Resumo:
The T-cell-mediated immune response exhibits a crucial function in the control of the intrahepatic proliferation of Echinococcus multilocularis larvae in mice and humans, both being natural intermediate hosts of the parasite. Antigen B (AgB), a metabolized Echinococcus spp. lipoprotein, contributes to the modulation of the T-cell immune response, and distinct sites of the corresponding AgB1, AgB3 and AgB4 genes were shown to be under positive selection pressure. Since several AgB gene variants are present in a single Echinococcus metacestode, we used secondary E. multilocularis infections in BALB/c and in athymic nude mice (devoid of T-cell responses) to analyze the effect of the cellular immune response on the expression and diversity of EmAgB1-EmAgB4 genes. We demonstrated hereby that EmAgB transcripts were less abundant in nude mice during the early phase of infection (at one month post-infection), and that EmAgB2 is simultaneously down-regulated when compared to the other three genes. A negative relationship exists between the level of transcription and diversity of EmAgB genes. Moreover, no excess of non-synonymous substitutions was found among the distinct EmAgB alleles from a single host. Together, these results pointed to the effect of purifying selection, which seemed to eliminate the detrimental AgB variants generated during the development of the metacestode within the peritoneal cavity of its intermediate host.