870 resultados para pacs: engineering mathematics and mathematical techniques
Resumo:
It is sometimes unquantifiable how hard it is for most people to deal with game addiction. Several articles have equally been published to address this subject, some suggesting the concept of Educational and serious games. Similarly, researchers have revealed that it does not come easy learning a subject like math. This is where the illusive world of computer games comes in. It is amazing how much people learn from games. In this paper, we have designed and programmed a simple PC math game that teaches rudimentary topics in mathematics.
Resumo:
Fehlende Grundkenntnisse in der Mathematik zählen zu den größten Hindernissen für einen erfolgreichen Start in ein Hochschulstudium. Studienanfänger in einem MINT-Studium bringen inzwischen deutlich unterschiedliche Vorrausetzungen mit: „Mathe-Angst“ gilt als typisches Phänomen und der Übergang in ein selbstbestimmtes Lernverhalten stellt eine große Herausforderung dar. Diese Fall-Studie beschreibt, wie mit Hilfe einer Mathe-App bereits zu Beginn des Studiums aktives Lernen unterstützt und selbstbestimmtes Lernen eingeübt werden kann. Das neue Kurskonzept mit App-Unterstützung stößt an der Hochschule Offenburg auf breite Akzeptanz. Der mobile BYOD-Ansatz ermöglicht Lern-Szenarien, die über PC- bzw.- Laptop-gebundene eLearning-Lösungen nicht realisierbar sind. Der Inhalt des MassMatics-Vorbereitungskurs orientiert sich am Mindestanforderungskatalog des cosh-Arbeitskreises für den Übergang Schule-Hochschule. In der Zwischenzeit wurde der App-gestützte Kurs mit seinen über 500 Aufgaben von mehr als 1000 Studierenden besucht.
Resumo:
This account provides an overview of the study day, entitled 'Topics in the History of Financial Mathematics: Early commerce to chaos in modern stock markets,' held by the British Society for the History of Mathematics jointly with Gresham College, at Gresham College, London on 25th April 2008. The series of talks explored the development of mathematics and mathematical techniques in a commercial and financial context.
Resumo:
Caption title: The American Association for the Advancement of Science. Section D--Mechanical science and engineering. Engineering Mathematics symposium.
Resumo:
This investigation is grounded within the concept of embodied cognition where the mind is considered to be part of a biological system. A first year undergraduate Mechanical Engineering cohort of students was tasked with explaining the behaviour of three balls of different masses being rolled down a ramp. The explanations given by the students highlighted the cognitive conflict between the everyday interpretation of the word energy and its mathematical use. The results showed that even after many years of schooling, students found it challenging to interpret the mathematics they had learned and relied upon pseudo-scientific notions to account for the behaviour of the balls.
Resumo:
Previous work by Professor John Frazer on Evolutionary Architecture provides a basis for the development of a system evolving architectural envelopes in a generic and abstract manner. Recent research by the authors has focused on the implementation of a virtual environment for the automatic generation and exploration of complex forms and architectural envelopes based on solid modelling techniques and the integration of evolutionary algorithms, enhanced computational and mathematical models. Abstract data types are introduced for genotypes in a genetic algorithm order to develop complex models using generative and evolutionary computing techniques. Multi-objective optimisation techniques are employed for defining the fitness function in the evaluation process.
Resumo:
With rapid and continuing growth of learning support initiatives in mathematics and statistics found in many parts of the world, and with the likelihood that this trend will continue, there is a need to ensure that robust and coherent measures are in place to evaluate the effectiveness of these initiatives. The nature of learning support brings challenges for measurement and analysis of its effects. After briefly reviewing the purpose, rationale for, and extent of current provision, this article provides a framework for those working in learning support to think about how their efforts can be evaluated. It provides references and specific examples of how workers in this field are collecting, analysing and reporting their findings. The framework is used to structure evaluation in terms of usage of facilities, resources and services provided, and also in terms of improvements in performance of the students and staff who engage with them. Very recent developments have started to address the effects of learning support on the development of deeper approaches to learning, the affective domain and the development of communities of practice of both learners and teachers. This article intends to be a stimulus to those who work in mathematics and statistics support to gather even richer, more valuable, forms of data. It provides a 'toolkit' for those interested in evaluation of learning support and closes by referring to an on-line resource being developed to archive the growing body of evidence. © 2011 Taylor & Francis.
Resumo:
This paper describes students’ developing meta-representational competence, drawn from the second phase of a longitudinal study, Transforming Children’s Mathematical and Scientific Development. A group of 21 highly able Grade 1 students was engaged in mathematics/science investigations as part of a data modelling program. A pedagogical approach focused on students’ interpretation of categorical and continuous data was implemented through researcher-directed weekly sessions over a 2-year period. Fine-grained analysis of the developmental features and explanations of their graphs showed that explicit pedagogical attention to conceptual differences between categorical and continuous data was critical to development of inferential reasoning.
Resumo:
We discuss three approaches to the use of technology as a teaching and learning tool that we are currently implementing for a target group of about one hundred second level engineering mathematics students. Central to these approaches is the underlying theme of motivating relatively poorly motivated students to learn, with the aim of improving learning outcomes. The approaches to be discussed have been used to replace, in part, more traditional mathematics tutorial sessions and lecture presentations. In brief, the first approach involves the application of constructivist thinking in the tertiary education arena, using technology as a computational and visual tool to create motivational knowledge conflicts or crises. The central idea is to model a realistic process of how scientific theory is actually developed, as proposed by Kuhn (1962), in contrast to more standard lecture and tutorial presentations. The second approach involves replacing procedural or algorithmic pencil-and-paper skills-consolidation exercises by software based tasks. Finally, the third approach aims at creating opportunities for higher order thinking via "on-line" exploratory or discovery mode tasks. The latter incorporates the incubation period method, as originally discussed by Rubinstein (1975) and others.
Resumo:
When a uniform flow of any nature is interrupted, the readjustment of the flow results in concentrations and rare-factions, so that the peak value of the flow parameter will be higher than that which an elementary computation would suggest. When stress flow in a structure is interrupted, there are stress concentrations. These are generally localized and often large, in relation to the values indicated by simple equilibrium calculations. With the advent of the industrial revolution, dynamic and repeated loading of materials had become commonplace in engine parts and fast moving vehicles of locomotion. This led to serious fatigue failures arising from stress concentrations. Also, many metal forming processes, fabrication techniques and weak-link type safety systems benefit substantially from the intelligent use or avoidance, as appropriate, of stress concentrations. As a result, in the last 80 years, the study and and evaluation of stress concentrations has been a primary objective in the study of solid mechanics. Exact mathematical analysis of stress concentrations in finite bodies presents considerable difficulty for all but a few problems of infinite fields, concentric annuli and the like, treated under the presumption of small deformation, linear elasticity. A whole series of techniques have been developed to deal with different classes of shapes and domains, causes and sources of concentration, material behaviour, phenomenological formulation, etc. These include real and complex functions, conformal mapping, transform techniques, integral equations, finite differences and relaxation, and, more recently, the finite element methods. With the advent of large high speed computers, development of finite element concepts and a good understanding of functional analysis, it is now, in principle, possible to obtain with economy satisfactory solutions to a whole range of concentration problems by intelligently combining theory and computer application. An example is the hybridization of continuum concepts with computer based finite element formulations. This new situation also makes possible a more direct approach to the problem of design which is the primary purpose of most engineering analyses. The trend would appear to be clear: the computer will shape the theory, analysis and design.