934 resultados para order effect
Resumo:
A dc magnetron sputtering-based method to grow high-quality Cu2ZnSnS4 (CZTS) thin films, to be used as an absorber layer in solar cells, is being developed. This method combines dc sputtering of metallic precursors with sulfurization in S vapour and with post-growth KCN treatment for removal of possible undesired Cu2−xS phases. In this work, we report the results of a study of the effects of changing the precursors’ deposition order on the final CZTS films’ morphological and structural properties. The effect of KCN treatment on the optical properties was also analysed through diffuse reflectance measurements. Morphological, compositional and structural analyses of the various stages of the growth have been performed using stylus profilometry, SEM/EDS analysis, XRD and Raman Spectroscopy. Diffuse reflectance studies have been done in order to estimate the band gap energy of the CZTS films. We tested two different deposition orders for the copper precursor, namely Mo/Zn/Cu/Sn and Mo/Zn/Sn/Cu. The stylus profilometry analysis shows high average surface roughness in the ranges 300–550 nm and 230–250 nm before and after KCN treatment, respectively. All XRD spectra show preferential growth orientation along (1 1 2) at 28.45◦. Raman spectroscopy shows main peaks at 338 cm−1 and 287 cm−1 which are attributed to Cu2ZnSnS4. These measurements also confirm the effectiveness of KCN treatment in removing Cu2−xS phases. From the analysis of the diffuse reflectance measurements the band gap energy for both precursors’ sequences is estimated to be close to 1.43 eV. The KCN-treated films show a better defined absorption edge; however, the band gap values are not significantly affected. Hot point probe measurements confirmed that CZTS had p-type semiconductor behaviour and C–V analysis was used to estimate the majority carrier density giving a value of 3.3 × 1018 cm−3.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
The paper explores the effects of birth order and sibling sex composition on human capital investment in children in India using the Indian Human Development Survey (IHDS). Endogeneity of fertility is addressed using instruments and controlling for household fixed effects. Family size effect is also distinguished from the sibling sex composition effect. Previous literature has often failed to take endogeneity into account and shows a negative birth order effect for girls in India. Once endogeneity of fertility is addressed, there is no evidence for a negative birth order effect or sibling sex composition effect for girls. Results show that boys are worse off in households that have a higher proportion of boys specifically when they have older brothers.
Resumo:
The purpose of the study was to determine reference percentiles for the urinary (U) oxalate (Ox) and urate (Ura) to creatinine (Cr) concentration ratios in the second morning urine of healthy infants, children, and adolescents. The urinary oxalate and urate to creatinine ratios were determined in the spontaneously voided second morning urine sample. To test reproducibility, two urine samples were analyzed on 2 consecutive weeks in 63% of the subjects. Three hundred eighty-four healthy children (181 girls, 203 boys), aged 1 month to 17 years, from nurseries, kindergartens, and schools of Lausanne, Switzerland, were studied. The 5th and 95th percentiles were determined from the total number of urine samples (627) after confirmation that there was no order effect between repeated measurements and there were no significant sex differences. A nonlinear regression analysis in terms of age was used to smooth the calculated percentiles. In this manner, curves were obtained from which the reference values can be read at any given age. The 95th percentiles decreased with age: for UOx/Cr from 0.175 mg/mg (0.22 mol/mol) at 1 to 6 months to 0.048 mg/mg (0.06 mol/mol) from 7 years and beyond; and UUra/Cr from 2.378 mg/mg (1.6 mol/mol) at 1 to 6 months to 0.594 mg/mg (0.4 mol/mol) in adolescence. We provide 5th and 95th percentile curves for the UOx/Cr and UUra/Cr ratios determined from the second morning urine samples in a large cohort of healthy infants, children, and adolescents. Values were determined by standard analytical chemical techniques and were analyzed by powerful statistical methods. The calculated 95th percentile for the UOx/Cr values fell rather rapidly and reached normal adult values by the age of 7 years, whereas for UUra/Cr, the 95th percentile decreased slowly and stabilized in adolescence.
Resumo:
BACKGROUND: Efavirenz (EFV) causes neuropsychiatric side-effects and an unfavourable blood lipid profile. We investigated the effect of replacing EFV with etravirine (ETR) on patient preference, sleep, anxiety and lipid levels. METHOD: Study participants did not complain of side-effects, had tolerated EFV for at least 3 months, with less than 50 copies/ml HIV-RNA. After randomization, the ETR-first group started with ETR (400 mg daily) [DOSAGE ERROR CORRECTED] with EFV-placebo and the EFV-first group with EFV with ETR-placebo. After 6 weeks, both groups switched to the alternate regimen. Nucleoside reverse transcriptase inhibitors were continued without any change. The primary end point was patient preference for the first or the second regimen, assessed after 12 weeks. RESULTS: Fifty-eight patients were enrolled with a median CD4 cell count of 589 cells/μl and the duration of previous EFV therapy was 3.9 years. Fifty-five patients completed the study. When asked about treatment preference after 12 weeks, 16 preferred EFV and 22 preferred ETR, whereas 17 did not express a preference (P = NS). Patients who continued EFV during the first phase of the trial preferred EFV (15/21, 71%), whereas patients who started with ETR were more likely to prefer ETR (n = 16/17, 94%). This order effect was strongly significant (P < 0.0001). Quality of sleep, depression, anxiety and stress scores did not differ significantly between groups. Median plasma cholesterol levels decreased by 0.7 mmol (29 mg/100 ml) after replacing EFV with ETR (P < 0.002). CONCLUSION: After substitution of EFV by ETR, patients did not express a significant preference for ETR. There was no measurable effect on neuropsychiatric symptoms and sleep. Cholesterol decreased.
Resumo:
We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)
Resumo:
The present study evaluated the correlation between the behavior of mice in the forced swimming test (FST) and in the elevated plus-maze (PM). The effect of the order of the experiments, i.e., the influence of the first test (FST or PM) on mouse behavior in the second test (PM or FST, respectively) was compared to handled animals (HAND). The execution of FST one week before the plus-maze (FST-PM, N = 10), in comparison to mice that were only handled (HAND-PM, N = 10) in week 1, decreased % open entries (HAND-PM: 33.6 ± 2.9; FST-PM: 20.0 ± 3.9; mean ± SEM; P<0.02) and % open time (HAND-PM: 18.9 ± 3.3; FST-PM: 9.0 ± 1.9; P<0.03), suggesting an anxiogenic effect. No significant effect was seen in the number of closed arm entries (FST-PM: 9.5 (7.0-11.0); HAND-PM: 10.0 (4.0-14.5), median (interquartile range); U = 46.5; P>0.10). A prior test in the plus-maze (PM-FST) did not change % immobility time in the FST when compared to the HAND-FST group (HAND-FST: 57.7 ± 3.9; PM-FST: 65.7 ± 3.2; mean ± SEM; P>0.10). Since these data suggest that there is an order effect, the correlation was evaluated separately with each test sequence: FST-PM (N = 20) and PM-FST (N = 18). There was no significant correlation between % immobility time in the FST and plus-maze indexes (% time and entries in open arms) in any test sequence (r: -0.07 to 0.18). These data suggest that mouse behavior in the elevated plus-maze is not related to behavior in the forced swimming test and that a forced swimming test before the plus-maze has an anxiogenic effect even after a one-week interval.
Resumo:
We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)
Resumo:
Dynamics affects the distribution and abundance of stratospheric ozone directly through transport of ozone itself and indirectly through its effect on ozone chemistry via temperature and transport of other chemical species. Dynamical processes must be considered in order to understand past ozone changes, especially in the northern hemisphere where there appears to be significant low-frequency variability which can look “trend-like” on decadal time scales. A major challenge is to quantify the predictable, or deterministic, component of past ozone changes. Over the coming century, changes in climate will affect the expected recovery of ozone. For policy reasons it is important to be able to distinguish and separately attribute the effects of ozone-depleting substances and greenhouse gases on both ozone and climate. While the radiative-chemical effects can be relatively easily identified, this is not so evident for dynamics — yet dynamical changes (e.g., changes in the Brewer-Dobson circulation) could have a first-order effect on ozone over particular regions. Understanding the predictability and robustness of such dynamical changes represents another major challenge. Chemistry-climate models have recently emerged as useful tools for addressing these questions, as they provide a self-consistent representation of dynamical aspects of climate and their coupling to ozone chemistry. We can expect such models to play an increasingly central role in the study of ozone and climate in the future, analogous to the central role of global climate models in the study of tropospheric climate change.
Resumo:
The vertical profile of global-mean stratospheric temperature changes has traditionally represented an important diagnostic for the attribution of the cooling effects of stratospheric ozone depletion and CO2 increases. However, CO2-induced cooling alters ozone abundance by perturbing ozone chemistry, thereby coupling the stratospheric ozone and temperature responses to changes in CO2 and ozone-depleting substances (ODSs). Here we untangle the ozone-temperature coupling and show that the attribution of global-mean stratospheric temperature changes to CO2 and ODS changes (which are the true anthropogenic forcing agents) can be quite different from the traditional attribution to CO2 and ozone changes. The significance of these effects is quantified empirically using simulations from a three-dimensional chemistry-climate model. The results confirm the essential validity of the traditional approach in attributing changes during the past period of rapid ODS increases, although we find that about 10% of the upper stratospheric ozone decrease from ODS increases over the period 1975–1995 was offset by the increase in CO2, and the CO2-induced cooling in the upper stratosphere has been somewhat overestimated. When considering ozone recovery, however, the ozone-temperature coupling is a first-order effect; fully 2/5 of the upper stratospheric ozone increase projected to occur from 2010–2040 is attributable to CO2 increases. Thus, it has now become necessary to base attribution of global-mean stratospheric temperature changes on CO2 and ODS changes rather than on CO2 and ozone changes.
Resumo:
The theory of homogeneous barotropic beta-plane turbulence is here extended to include effects arising from spatial inhomogeneity in the form of a zonal shear flow. Attention is restricted to the geophysically important case of zonal flows that are barotropically stable and are of larger scale than the resulting transient eddy field. Because of the presumed scale separation, the disturbance enstrophy is approximately conserved in a fully nonlinear sense, and the (nonlinear) wave-mean-flow interaction may be characterized as a shear-induced spectral transfer of disturbance enstrophy along lines of constant zonal wavenumber k. In this transfer the disturbance energy is generally not conserved. The nonlinear interactions between different disturbance components are turbulent for scales smaller than the inverse of Rhines's cascade-arrest scale κβ[identical with] (β0/2urms)½ and in this regime their leading-order effect may be characterized as a tendency to spread the enstrophy (and energy) along contours of constant total wavenumber κ [identical with] (k2 + l2)½. Insofar as this process of turbulent isotropization involves spectral transfer of disturbance enstrophy across lines of constant zonal wavenumber k, it can be readily distinguished from the shear-induced transfer which proceeds along them. However, an analysis in terms of total wavenumber K alone, which would be justified if the flow were homogeneous, would tend to mask the differences. The foregoing theoretical ideas are tested by performing direct numerical simulation experiments. It is found that the picture of classical beta-plane turbulence is altered, through the effect of the large-scale zonal flow, in the following ways: (i) while the turbulence is still confined to K Kβ, the disturbance field penetrates to the largest scales of motion; (ii) the larger disturbance scales K < Kβ exhibit a tendency to meridional rather than zonal anisotropy, namely towards v2 > u2 rather than vice versa; (iii) the initial spectral transfer rate away from an isotropic intermediate-scale source is significantly enhanced by the shear-induced transfer associated with straining by the zonal flow. This last effect occurs even when the large-scale shear appears weak to the energy-containing eddies, in the sense that dU/dy [double less-than sign] κ for typical eddy length and velocity scales.
Resumo:
Satellite-based (e.g., Synthetic Aperture Radar [SAR]) water level observations (WLOs) of the floodplain can be sequentially assimilated into a hydrodynamic model to decrease forecast uncertainty. This has the potential to keep the forecast on track, so providing an Earth Observation (EO) based flood forecast system. However, the operational applicability of such a system for floods developed over river networks requires further testing. One of the promising techniques for assimilation in this field is the family of ensemble Kalman (EnKF) filters. These filters use a limited-size ensemble representation of the forecast error covariance matrix. This representation tends to develop spurious correlations as the forecast-assimilation cycle proceeds, which is a further complication for dealing with floods in either urban areas or river junctions in rural environments. Here we evaluate the assimilation of WLOs obtained from a sequence of real SAR overpasses (the X-band COSMO-Skymed constellation) in a case study. We show that a direct application of a global Ensemble Transform Kalman Filter (ETKF) suffers from filter divergence caused by spurious correlations. However, a spatially-based filter localization provides a substantial moderation in the development of the forecast error covariance matrix, directly improving the forecast and also making it possible to further benefit from a simultaneous online inflow error estimation and correction. Additionally, we propose and evaluate a novel along-network metric for filter localization, which is physically-meaningful for the flood over a network problem. Using this metric, we further evaluate the simultaneous estimation of channel friction and spatially-variable channel bathymetry, for which the filter seems able to converge simultaneously to sensible values. Results also indicate that friction is a second order effect in flood inundation models applied to gradually varied flow in large rivers. The study is not conclusive regarding whether in an operational situation the simultaneous estimation of friction and bathymetry helps the current forecast. Overall, the results indicate the feasibility of stand-alone EO-based operational flood forecasting.
Resumo:
We investigated whether variants in major candidate genes for food intake and body weight regulation contribute to obesity-related traits under a multilocus perspective. We studied 375 Brazilian subjects from partially isolated African-derived populations (quilombos). Seven variants displaying conflicting results in previous reports and supposedly implicated in the susceptibility of obesity-related phenotypes were investigated: beta(2)-adrenergic receptor (ADRB2) (Arg16Gly), insulin induced gene 2 (INSIG2) (rs7566605), leptin (LEP) (A19G), LEP receptor (LEPR) (Gln223Arg), perilipin (PLIN) (6209T > C), peroxisome proliferator-activated receptor-gamma (PPARG) (Pro12Ala), and resistin (RETN) (-420C > G). Regression models as well as generalized multifactor dimensionality reduction (GMDR) were employed to test the contribution of individual effects and higher-order interactions to BMI and waist-hip ratio (WHR) variation and risk of overweight/obesity. The best multilocus association signal identified in the quilombos was further examined in an independent sample of 334 Brazilian subjects of European ancestry. In quilombos, only the PPARG polymorphism displayed significant individual effects (WHR variation, P = 0.028). No association was observed either with the risk of overweight/obesity (BMI >= 25 kg/m(2)), risk of obesity alone (BMI >= 30 kg/m(2)) or BMI variation. However, GMDR analyses revealed an interaction between the LEPR and ADRB2 polymorphisms (P = 0.009) as well as a third-order effect involving the latter two variants plus INSIG2 (P = 0.034) with overweight/obesity. Assessment of the LEPR-ADRB2 interaction in the second sample indicated a marginally significant association (P = 0.0724), which was further verified to be limited to men (P = 0.0118). Together, our findings suggest evidence for a two-locus interaction between the LEPR Gln223Arg and ADRB2 Arg16Gly variants in the risk of overweight/obesity, and highlight further the importance of multilocus effects in the genetic component of obesity.
Magnetic behavior of poly(3-methylthiophene): Metamagnetism and room-temperature weak ferromagnetism
Resumo:
A weak ferromagnetic phase is shown in pressed pellets of partially doped poly(3-methylthiophene) (P3MT) in the whole range from 1.8 to 300 K in magnetic measurements. Thermoremanence data have been used to estimate the suppression of this phase to be around 815 K. We also show that instead of the classical antiferromagnetism for the first-order interaction that gives weak ferromagnetism as a second-order effect, metamagnetic behavior is observed. X-band electron spin resonance (ESR) measurements and magnetization measurements allowed us to estimate that 8.1% of the total number of spins contributes to the weak ferromagnetism at room temperature. The doping level obtained from the ESR data is in good agreement with that estimated from electron dispersive spectroscopy measurements.