935 resultados para offset implant placement
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The aim of this in vitro study was to quantify strain development during axial and nonaxial loading using strain gauge analysis for three-element implant-supported FPDs, varying the arrangement of implants: straight line (L) and offset (O). Materials and Methods: Three Morse taper implants arranged in a straight line and three implants arranged in an offset configuration were inserted into two polyurethane blocks. Microunit abutments were screwed onto the implants, applying a 20 Ncm torque. Plastic copings were screwed onto the abutments, which received standard wax patterns cast in Co-Cr alloy (n = 10). Four strain gauges were bonded onto the surface of each block tangential to the implants. The occlusal screws of the superstructure were tightened onto microunit abutments using 10 Ncm and then axial and nonaxial loading of 30 Kg was applied for 10 seconds on the center of each implant and at 1 and 2 mm from the implants, totaling nine load application points. The microdeformations determined at the nine points were recorded by four strain gauges, and the same procedure was performed for all of the frameworks. Three loadings were made per load application point. The magnitude of microstrain on each strain gauge was recorded in units of microstrain (mu). The data were analyzed statistically by two-way ANOVA and Tukey's test (p < 0.05). Results: The configuration factor was statistically significant (p= 0.0004), but the load factor (p= 0.2420) and the interaction between the two factors were not significant (p= 0.5494). Tukey's test revealed differences between axial offset (mu) (183.2 +/- 93.64) and axial straight line (285.3 +/- 61.04) and differences between nonaxial 1 mm offset (201.0 +/- 50.24) and nonaxial 1 mm straight line (315.8 +/- 59.28). Conclusion: There was evidence that offset placement is capable of reducing the strain around an implant. In addition, the type of loading, axial force or nonaxial, did not have an influence until 2 mm.
Resumo:
Purpose: The present study was designed to analyze strain distributions caused by varying the fixture-abutment design and fixture alignment.Materials and Methods: Three implants of external, internal hexagon, and Morse taper were embedded in the center of each polyurethane block in straight placement and offset placement. Four strain gauges (SGs) were bonded on the surface of polyurethane block, which was designated SG1 placed mesially adjacent to implant A, SG2 and SG3 were placed mesially and distally adjacent to the implant B and SG4 was placed distally adjacent to the implant C. The 30 superstructures' occlusal screws were tightened onto the Microunit abutments with a torque of 10 N cm using the manufacturers' manual torque-controlling device.Results: There were statistically significant differences in prosthetic connection (P value = 0.0074 < 0.5). There were no statistically significant differences in placement configuration/alignment (P value = 0.7812 > 0.5).Conclusion: The results showed fundamental differences in both conditions. There was no evidence that there was any advantage to offset implant placement in reducing the strain around implants. The results also revealed that the internal hexagon and Morse taper joints did not reduce the microstrain around implants. (Implant Dent 2011; 20:e24-e32)
Resumo:
This article addresses diagnostic parameters that should be assessed in the treatment of extraction sockets with dental implant placement by presenting three case reports that emphasize the relevance of the amount of remaining bone walls. Diagnosis was based on the analysis of clinical and radiographic parameters (e.g.: bone defect morphology, remaining bone volume, presence of infections on the receptor site). Case 1 presents a 5-wall defect in the maxillary right central incisor region with severe root resorption, which was treated with immediate implant placement. Cases 2 and 3 present, respectively, two- and three-wall bone defects that did not have indication for immediate implants. These cases were first submitted to a guided bone regeneration (GBR) procedure with bone graft biomaterial and membrane barriers, and the implants were installed in a second surgical procedure. The analysis of the preoperative periodontal condition of the adjacent teeth and bone defect morphology is extremely important because these factors determine the choice between immediate implant or GBR treatment followed by implant installation in a subsequent intervention.
Resumo:
Purpose: The present study assessed damage to the inferior alveolar nerve (IAN) following nerve lateralization and implant placement surgery through optical and transmission electron microscopy (TEM). Materials and Methods: IAN lateralization was performed in 16 adult female rabbits (Oryctolagus cuniculus). During the nerve lateralization procedure, one implant was placed through the mandibular canal, and the IAN was replaced in direct contact with the implant The implant was placed in the right mandible, and the left side was used as a control (no surgical procedure) After 8 weeks, the animals were sacrificed and samples were prepared for optical and TEM analysis of IAN structural damage Histomorphometric analysis was performed to determine the number and cross-sectional dimensions of nerve fascicles and myelin sheath thickness between experimental and control grouos. The different parameters were compared by one-way analysis of variance at the 95% significance level Results: Alterations in the perineural and endoneural regions of the IAN, with higher degrees of vascularization., were observed in the experimental group TEM showed that the majority of the myelinated nerve fibers were not affected in the experimental samples. No significant variation in the number of fascicles was observed, significantly larger fascicle height and width were observed in the control group, and significantly thicker myelin sheaths were observed in the experimental samples Conclusion: IAN lateralization resulted in substantial degrees of tissue disorganization at the microstructural level because of the presence of edema However, at the ultrastructural level, small amounts of fiber degeneration were observed. INT J ORAL MAXILLOFAC IMPLANTS 2009,24-859-865
Resumo:
Purpose: The purpose of this study was to analyze electrocardiographic alterations during dental implant surgeries when local anesthetic agents were used. Materials and Methods: Twenty implants were placed in 18 healthy patients. An electrocardiogram and Wincardio software were used to gather recordings from 12 static leads every 2 minutes, continuously record coronary artery (D2) derivations, and automatically measure the following electrocardiographic parameters: heart rate, duration and amplitude of the P wave, PR segment duration, ST segment deviation, QRS complex duration, and duration of the RR, QT, and corrected QT (QTc) intervals. Results: Analysis of variance of the values obtained at the different stages showed significant differences (P < .05) for the heart rate and for the duration of the RR and QT intervals. The heart rate increased during the anesthesia, incision, and bone drilling stages, reaching a peak during drilling. Duration of the RR and QT intervals decreased during the incision and drilling stages. Among the electrocardiographic parameters individually assessed, several altered values were found for the duration of the P wave, the QRS complex, and the QT and QTc intervals. Sinusal tachycardia and bradycardia, sinusal arrhythmia, supraventricular extrasystole, ventricular extrasystole, and T-wave inversion were detected. Conclusion: Dental implant placement surgery may induce electrocardiographic alterations. The most frequently found arrhythmias were extrasystole and sinusal tachycardia. The anesthesia, incision, and bone drilling stages exhibited the highest heart rate values and the shortest durations of the RR and QT intervals. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:412-418
Resumo:
Immediate loading of dental implants shortens the treatment time and makes it possible to give the patient an esthetic appearance throughout the treatment period. Placement of dental implants requires precise planning that accounts for anatomic limitations and restorative goals. Diagnosis can be made with the assistance of computerized tomographic scanning, but transfer of planning to the surgical field is limited. Recently, novel CAD/CAM techniques such as stereolithographic rapid prototyping have been developed to build surgical guides in an attempt to improve precision of implant placement. The aim of this case report was to show a modified surgical template used throughout implant placement as an alternative to a conventional surgical guide.
Resumo:
The aims of this article were to describe the surgical technique of the inferior alveolar nerve lateralization followed by implant installation by means of a clinical report and also to discuss the importance of an adequate surgical and prosthetic planning for atrophic posterior mandible rehabilitation.
Resumo:
Aim: This article is a case report of a patient in whom the prosthetic planning indicated the necessity of an incisive canal deflation for the correct installation of all implant that is to be osseointegrated.Case Report. In the reopening phase after the bone graft installation, the incisive canal deflation (biopsy of its content) was done and titanium implants were installed with one of them invading the anatomical space occupied previously by the incisive canal. The biopsy analysis showed fragments of the incisive artery and nerve., which are responsible for the anterior upper-tooth pulp, the periodontium vascularization. and the innervation. Front the anastomosis present along with other structures allied with the absence of teeth in the region, there was no detriment to the patient caused by the deflation.Conclusion: Incisive canal deflation is a viable technique in implantology. It can permit ideal prosthetic planning with no detriment to the patient. (Implant Dent 2009;18:473-479)
Resumo:
Inferior Alveolar Nerve (IAN) transposition is an option for prosthetic rehabilitation in cases of moderate or even severe bone reabsorption for patients that do not tolerate removable dentures. The aim of the present report is to describe an inferior alveolar nerve transposition with involvement of the mental foramen for implant placement. The surgical procedure was performed under local anesthesia, by the inferior alveolar, lingual and buccal nerve blocking technique. Centripetal osteotomy was performed, and bone tissue was removed, leaving the nerve tissue free in the foramen area. After that, transsection of the incisor nerve was performed, and lateral osteotomy was started from the buccal direction, toward the trajectory of the IAN. The procedure was concluded, by making use of a delicate resin spatula to manipulate the vascular-nervous bundle. The drilling sequence for placing the dental implants was performed, and autogenous bone was harvested using a bone collector attached to the surgical suction appliance. After the implants were placed, the bone tissue previously collected during the osteotomies and drilling processes was placed in order to protect the IAN from contact with the implants. The surgical protocol for inferior alveolar nerve transposition, followed by implant placement presented excellent results, with complete recovery of the sensitivity, seven months after the surgical procedure.
Resumo:
The aim of this study was to evaluate the influence of the high values of insertion torques on the stress and strain distribution in cortical and cancellous bones. Based on tomography imaging, a representative mathematical model of a partial maxilla was built using Mimics 11.11 and Solid Works 2010 softwares. Six models were built and each of them received an implant with one of the following insertion torques: 30, 40, 50, 60, 70 or 80 Ncm on the external hexagon. The cortical and cancellous bones were considered anisotropic. The bone/implant interface was considered perfectly bonded. The numerical analysis was carried out using Ansys Workbench 10.0. The convergence of analysis (6%) drove the mesh refinement. Maximum principal stress (σ max) and maximum principal strain (ε max) were obtained for cortical and cancellous bones around to implant. Pearson's correlation test was used to determine the correlation between insertion torque and stress concentration in the periimplant bone tissue, considering the significance level at 5%. The increase in the insertion torque generated an increase in the σ max and ε max values for cortical and cancellous bone. The σmax was smaller for the cancellous bone, with greater stress variation among the insertion torques. The ε max was higher in the cancellous bone in comparison to the cortical bone. According to the methodology used and the limits of this study, it can be concluded that higher insertion torques increased tensile and compressive stress concentrations in the periimplant bone tissue.
Resumo:
Objective: To compare immediate and staged approach implant placement in circumferential defects treated with deproteinized bovine bone mineral (DBBM); hidroxyapatite/tricalcium phosphate (HA/TP); autogenous bone (Ab); and coagulum (Cg); upon implant stability, osseointegration and alveolar crest maintenance. Materials and methods: Six dogs underwent extractions of lower premolars, bilaterally. Twelve weeks later four bone defects (6 mm wide/4 mm long) were drilled at one side and randomly filled with DBBM; HA/TP; Ab; and Cg, respectively, and left to heal (staged approach). Eight weeks later one implant (Osseospeed™, AstraTech) was placed in experimental sites. At the same session four defects were drilled on contra-lateral side and implants were inserted immediately after biomaterials grafting (immediate approach). Animals were euthanized 8 weeks later. Implant stability was measured by resonance frequency analysis (RFA) at installation and after sacrifice. Ground sections were prepared for bone contact (BIC); bone area (BA); distance implant shoulder-bone crest (IS-C); distance implant shoulder first bone contact (IS-B); and areas occupied by soft tissue. Results: The BA and BIC were superior in the staged approach. The Cg exhibited higher BIC and BA as compared with other materials at the total implant body (P = 0.004 and 0.012, respectively). The DBBM, HA/TP and Ab groups rendered similar BA and BIC. The immediate approach resulted in less crest resorption compared to staged approach. The biomaterials did not affect the IS-C and IS-B measurements. Particles area tended to be higher in DBBM group than HA/TP (P = 0.15), while soft tissue infiltrate was higher in DBBM group when used in the immediate approach (P = 0.04). The RFA indicated gain in stability in the staged approach (P = 0.002). The correlation test between RFA vs. BIC and BA demonstrated inferior stability for DBBM group in immediate approach (P = 0.01). Conclusions: Implants placed in healed defects resulted in better stability as a consequence of higher BIC and BA. The Cg alone rendered increased BIC compared to other materials in both approaches. Immediate approach should be preferable to staged approach in terms of alveolar crest maintenance. The BIC and BA values did not vary between micro and macro-threads in this experimental model. Implants installed in sites filled with DBBM in immediate approach were less stable. © 2011 John Wiley & Sons A/S.
Resumo:
PURPOSE: The present case describes an inferior alveolar nerve lateralization for implant placement that caused mandible fracture a few days after surgery. CLINICAL REPORT: In this case, a 56-year-old female patient who had a severely atrophied jaw and showing bone height less than 7 mm from the bone crest and the mandibular canal was submitted to surgery lateralization of the inferior alveolar conducted with piezzo. Even with all postoperative care, the patient suffered an incomplete fracture of the mandible a few days after lateralization of the inferior alveolar nerve for implant placement. The patient was treated with soft diet and medications for pain and antibiotics, besides removing the implant associated with the fracture. CONCLUSION: It is suggested that this procedure may be conducted in 2 operative periods: firstly, the lateralization of the inferior alveolar; and secondly, after a period of 3 months, the implant placement in a situation of more bone stability. Copyright © 2013 by Mutaz B. Habal, MD.
Resumo:
Background: Dental implants, indicated for re-establishing both mastigatory and aesthetic functions, can be placed in the sockets immediately after tooth extraction. Most studies investigate the anterior and upper regions of the dental arch, whereas few examine longitudinal appraisal of immediate implant installation in the mandibular molar region. Objective: The aim of this retrospective study was to evaluate the success rate of immediate dental implants placement in mandibular molars within a follow-up period as long as 8 years. Materials and methods: Seventy-four mandibular molar implants after non-traumatic tooth extraction between 2002 and 2008 were examined in the study. All implants were evaluated radiographically immediately after prosthesis placement, 1 year after implantation, and by the end of the experimental period, in 2010. Clinical evaluation was done according to [Albrektsson et al. (1986) The International Journal of Oral & Maxillofacial Implants, 1, 11-25] success criteria for marginal bone loss. The mean bone losses, calculated as the difference between the final evaluation measures and those taken by the end of the first year of implant, were compared using Kruskal-Wallis test with a significance level of 5%. Results: All implants presented clinical and radiographic stable conditions, that is, 100% success rate. Significant bone loss was not found between final evaluation and that of the first functional year (P > 0.05). Conclusion: Immediate implant placement of mandibular molars proved to be a viable surgical treatment given the high success rate up to 8 years after implantation. © 2012 John Wiley & Sons A/S.