979 resultados para office building design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within-building spatial variability of indoor air quality may influence substantially the reliability of human exposure assessments based on single point samples, but have hitherto been little studied. To investigate and understand the within-building spatial variation of air pollutants, field measurements were conducted in a 7 level office building in Brisbane, Australia. The building consists of 3 sections (A side, Meddler and B side).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of office building retrofit projects is increasing. These projects are characterised by processes which have a close relationship with waste generation and therefore demand a high level of waste management. In a preliminary study reported separately, we identified seven critical factors of on-site waste generation in office building retrofit projects. Through semi-structured interviews and Interpretive Structural Modelling, this research further investigated the interrelationships among these critical waste factors, to identify each factor’s level of influence on waste generation and propose effective solutions for waste minimization. “Organizational commitment” was identified as the fundamental issue for waste generation in the ISM system. Factors related to plan, design and construction processes were found to be located in the middle levels of the ISM model but still had significant impacts on the system as a whole. Based on the interview findings and ISM analysis results, some practical solutions were proposed for waste minimization in building retrofit projects: (1) reusable and adaptable fit-out design; (2) a system for as-built drawings and building information; (3) integrated planning for retrofitting work process and waste management; and (4) waste benchmarking development for retrofit projects. This research will provide a better understanding of waste issues associated with building retrofit projects and facilitate enhanced waste minimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Office building retrofit is a sector being highlighted in Australia because of the mature office building market characterised by a large proportion of ageing properties. The increasing number of office building retrofit projects strengthens the need for waste management. Retrofit projects possess unique characteristics in comparison to traditional demolition and new builds such as partial operation of buildings, constrained site spaces and limited access to as-build information. Waste management activities in retrofit projects can be influenced by issues that are different from traditional construction and demolition projects. However, previous research on building retrofit projects has not provided an understanding of the critical issues affecting waste management. This research identifies the critical factors which influence the management of waste in office building retrofit projects through a literature study and a questionnaire survey to industry practitioners. Statistical analysis on a range of potential waste issues reveals the critical factors, as agreed upon by survey respondents in consideration of their different professional responsibilities and work natures. The factors are grouped into five dimensions, comprising industry culture, organisational support and incentive, existing building information, design, and project delivery process. The discussions of the dimensions indicate that the waste management factors of office building retrofit projects are further intensified compared to those for general demolition and construction because retrofit projects involve existing buildings which are partially operating with constrained work space and limited building information. Recommendations for improving waste management in office building retrofit projects are generalised such as waste planning, auditing and assessment in the planning and designing stage, collaboration and coordination of various stakeholders and different specialists, optimised building surveying and BIM technologies for waste analysis, and new design strategies for waste prevention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental problems, especially climate change, have become a serious global issue waiting for people to solve. In the construction industry, the concept of sustainable building is developing to reduce greenhouse gas emissions. In this study, a building information modeling (BIM) based building design optimization method is proposed to facilitate designers to optimize their designs and improve buildings’ sustainability. A revised particle swarm optimization (PSO) algorithm is applied to search for the trade-off between life cycle costs (LCC) and life cycle carbon emissions (LCCE) of building designs. In order tovalidate the effectiveness and efficiency of this method, a case study of an office building is conducted in Hong Kong. The result of the case study shows that this method can enlarge the searching space for optimal design solutions and shorten the processing time for optimal design results, which is really helpful for designers to deliver an economic and environmental friendly design scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Demands for thermal comfort, better indoor air quality together with lower environmental impacts have had ascending trends in the last decade. In many circumstances, these demands could not be fully covered through the soft approach of bioclimatic design like optimisation of the building orientation and internal layout. This is mostly because of the dense urban environment and building internal energy loads. In such cases, heating, ventilation, air-conditioning and refrigeration (HVAC&R) systems make a key role to fulfill the requirements of indoor environment. Therefore, it is required to select the most proper HVAC&R system. In this study, a robust decision making approach for HVAC&R system selection is proposed. Technical performance, economic aspect and environmental impacts of 36 permutations of primary and secondary systems are taken into account to choose the most proper HVAC&R system for a case study office building. The building is a representative for the dominant form of office buildings in the UK. Dynamic performance evaluation of HVAC&R alternatives using TRNSYS package together with life cycle energy cost analysis provides a reliable basis for decision making. Six scenarios broadly cover the decision makers' attitudes on HVAC&R system selection which are analysed through Analytical Hierarchy Process (AHP). One of the significant outcomes reveals that, despite both the higher energy demand and more investment requirements associated with compound heating, cooling and power system (CCHP); this system is one of the top ranked alternatives due to the lower energy cost and C02 emissions. The sensitivity analysis reveals that in all six scenarios, the first five top ranked alternatives are not changed. Finally, the proposed approach and the results could be used by researchers and designers especially in the early stages of a design process in which all involved bodies face the lack of time, information and tools for evaluation of a variety of systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-storey rammed earth building was built on the Thurgoona Campus of Charles Sturt University in Albury-Wodonga, Australia, in 1999. The building is novel both in the use of materials and equipment for heating and cooling. The climate at Wodonga can be characterised as hot and dry, so the challenge of providing comfortable working conditions with minimal energy consumption is considerable. This paper describes an evaluation of the building in terms of measured thermal comfort and energy use. Measurements, confirmed by a staff questionnaire, found the building was too hot in summer and too cold in winter. Comparison with another office building in the same location found that the rammed earth building used more energy for heating. The thermal performance of three offices in the rammed earth building was investigated further using simulation to predict office temperatures. Comparisons were made with measurements made over typical weeks in summer and winter. The validated model has been used to investigate key building parameters and strategies to improve the thermal comfort and reduce energy consumption in the building. Simulations showed that improvements could be made by design and control strategy changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to present research which analysed energy consumption in the Melbourne central business district (CBD) office stock and examined all buildings to identify CO2 emissions in 2005. The rationale was that, by profiling a large group of buildings, it would be possible to identify characteristics of the stock. For example, do older buildings typically emit more CO2 per square metre than newer buildings?
Design/methodology/approach – This research conducted a detailed analysis of all Melbourne CBD office stock to identify which patterns and trends emerged regarding building characteristics and carbon emissions. The study examined variables such as building size, number of employees, occupancy levels, physical characteristics and building age.
Findings – By examining all office stock and aggregating data, the results confirm that it is possible to identify general physical building characteristics and carbon emissions. This research confirmed that clear relationships existed within the Melbourne CBD office stock in terms of building size, age and the density of occupation in relation to CO2 emissions.
Originality/value – Practitioners can apply this knowledge to the professional advice they give to clients to assist in achieving increased energy efficiency in the office stock, for example in refurbishment being conscious that smaller buildings will be generally less energy-efficient than larger ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the Intergovernmental Panel on Climate Change the buildings sector has the largest mitigation potential for CO2 emissions. Especially in office buildings, where internal heat loads and a relatively high occupant density occur at the same time with solar heat gains, overheating has become a common problem. In Europe the adaptive thermal comfort model according to EN 15251 provides a method to evaluate thermal comfort in naturally ventilated buildings. However, especially in the context of the climate change and the occurrence of heat waves within the last decade, the question arises, how thermal comfort can be maintained without additional cooling, especially in warm climates. In this paper a parametric study for a typical cellular naturally ventilated office room has been conducted, using the building simulation software EnergyPlus. It is based on the Mediterranean climate of Athens, Greece. Adaptive thermal comfort is evaluated according to EN 15251. Variations refer to different building design priorities, and they consider the variability of occupant behaviour and internal heat loads by using an ideal and worst case scenario. The influence of heat waves is considered by comparing measured temperatures for an average and an exceptionally hot year within the last decade. Since the use of building controls for shading affects thermal as well as visual comfort, daylighting and view are evaluated as well. Conclusions are drawn regarding the influence and interaction of building design, occupants and heat waves on comfort and greenhouse gas emissions in naturally ventilated offices, and related optimisation potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poor air quality has a huge detrimental effect, both economic and on the quality of life, in Australia. Transit oriented design (TOD), which aims to minimise urban sprawl and lower dependency on vehicles, leads to an increasing number of buildings close to transport corridors. This project aims at providing guidelines that are appropriate to include within City Plan to inform future planning along road corridors, and provide recommendations on when mitigation measures should be utilised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an initial report of the PolyU SD part of the team to study Pre-fabricated Building Design and Construction Methodology and marks the completion of Phase 1. It follows our first notes prepared for the meeting on 2 February that identified some critical issues including future lifestyles, life expectancy of buildings, sustainability, size, flexibility and planning considerations. It is also an expansion of our presentation in Dongguan on 23 February. It is not a comprehensive survey of existing approaches or possible ways forward, but it has homed in on certain specific issues and does give specific examples to make the suggestions concrete. It is recommended that more comprehensive research be done to establish previous work and experience internationally. It is also recommended that more research be done on lifestyles as a preliminary to developing at least three concepts for evaluation before proceeding to the detailed design of one concept for full prototyping and market testing. The goal at this point is not to define a single direction but to suggest several future trajectories for further consideration. By the same token, this report is not intended as an exhaustive description of the considerable base of knowledge and ideas brought by the PolyU team to this exciting task. Before taking on an issue of this magnitude and importance in the definition of Hong Kong's future, one must carry out a thoughtful analysis of the issues at hand and an informed definition of paradigms, directions, goals and methods whereby our energies can be best used in the next steps. This report is the result of this analysis