842 resultados para objective audits
Resumo:
OBJECTIVE: This work investigates the delivery accuracy of different Varian linear accelerator models using log-file derived MLC RMS values.
METHODS: Seven centres independently created a plan on the same virtual phantom using their own planning system and the log files were analysed following delivery of the plan in each centre to assess MLC positioning accuracy. A single standard plan was also delivered by seven centres to remove variations in complexity and the log files were analysed for Varian TrueBeams and Clinacs (2300IX or 2100CD models).
RESULTS: Varian TrueBeam accelerators had better MLC positioning accuracy (<1.0mm) than the 2300IX (<2.5mm) following delivery of the plans created by each centre and also the standard plan. In one case log files provided evidence that reduced delivery accuracy was not associated with the linear accelerator model but was due to planning issues.
CONCLUSIONS: Log files are useful in identifying differences between linear accelerator models, and isolate errors during end-to-end testing in VMAT audits. Log file analysis can rapidly eliminate the machine delivery from the process and divert attention with confidence to other aspects. Advances in Knowledge: Log file evaluation was shown to be an effective method to rapidly verify satisfactory treatment delivery when a dosimetric evaluation fails during end-to-end dosimetry audits. MLC RMS values for Varian TrueBeams were shown to be much smaller than Varian Clinacs for VMAT deliveries.
Resumo:
Certains mouvements sociaux transnationaux (MSTN) militent pour le respect des normes sociales et environnementales en particulier dans les pays à bas salaires. Ils développent pour cela de nouveaux instruments, des labels et des codes de conduites. Ces mouvements sociaux transnationaux cherchent au travers ces derniers à renforcer la régulation sociale, environnementale et sa démocratisation au plan international. Mais la privatisation de la vérification des normes sociales et environnementales nuit à l’indépendance économique des auditeurs. Ainsi, ce mode de régulation s’avère contraire à leur objectif à long terme : une régulation sociale encadrée par des pouvoirs publics démocratisés.
Resumo:
Matching method of heavy truck-rear air suspensions is discussed, and a fuzzy control strategy which improves both ride comfort and road friendliness of truck by adjusting damping coefficients of the suspension system is found. In the first place, a Dongfeng EQ1141G7DJ heavy truck’s ten DOF whole vehicle-road model was set up based on Matlab/Simulink and vehicle dynamics. Then appropriate passive air suspensions were chosen to replace the original rear leaf springs of the truck according to truck-suspension matching criterions, consequently, the stiffness of front leaf springs were adjusted too. Then the semi-active fuzzy controllers were designed for further enhancement of the truck’s ride comfort and the road friendliness. After the application of semi-active fuzzy control strategy through simulation, is was indicated that both ride comfort and road friendliness could be enhanced effectively under various road conditions. The strategy proposed may provide theory basis for design and development of truck suspension system in China.
Resumo:
The aetiology of secondary lymphoedema seems to be multifactorial, with acquired abnormalities as well as pre-existing conditions being contributory factors. Many characteristics bear inconsistent relationships to lymphoedema risk, and the few that are consistently associated with an increased risk of developing the condition, do not alone distinguish the at-risk population. Further, our current prevention and management recommendations are not backed by strong evidence. Consequently, there remains much to be learned about who gets it, how can it be prevented and how can we best treat it. Nonetheless, it is clear that lymphoedema is associated with adverse side effects, which have a profound impact on daily life, and that preliminary evidence suggests that early detection may lead to more effective treatment and lack of treatment may lead to progression. These represent important reasons as to why lymphoedema deserves clinical attention. However, several pragmatic issues must be considered when discussing whether a routine objective measure of lymphoedema could be integrated among the standard clinical care of those undertaking treatment for cancers known to be associated with the development of lymphoedema.
Resumo:
Economists rely heavily on self-reported measures to examine the relationship between income and health. We directly compare survey responses of a self-reported measure of health that is commonly used in nationally representative surveys with objective measures of the same health condition. We focus on hypertension. We find no evidence of an income/health greadient using self-reported hypertension but a sizeable gradient when using objectively measured hypertension. We also find that the probability of a false negative reporting is significantly income graded. Our results suggest that using commonly available self-reported chronic health measures might underestimate true income-related inequalities in health.
Resumo:
Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
Compared to people with a high socioeconomic status, those with a lower socioeconomic status are more likely to perceive their neighbourhood as unattractive and unsafe, which is associated with their lower levels of physical activity. Agreement between objective and perceived environmental factors is often found to be moderate or low, so it is questionable to what extent ‘creating supportive neighbourhoods’ would change neighbourhood perceptions. This study among residents (N=814) of fourteen neighbourhoods in the city of Eindhoven (the Netherlands), investigated to what extent socioeconomic differences in perceived neighbourhood safety and perceived neighbourhood attractiveness can be explained by five domains of objective neighbourhood features (i.e. design, traffic safety, social safety, aesthetics, and destinations), and to what extent other factors may play a role. Unfavourable neighbourhood perceptions of low socioeconomic groups partly reflected their actual less aesthetic and less safe neighbourhoods, and partly their perceptions of low social neighbourhood cohesion and adverse psychosocial circumstances.
Resumo:
This paper presents the application of advanced optimization techniques to unmanned aerial system mission path planning system (MPPS) using multi-objective evolutionary algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA nondominated sorting genetic algorithm II and a hybrid-game strategy are implemented to produce a set of optimal collision-free trajectories in a three-dimensional environment. The resulting trajectories on a three-dimensional terrain are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different positions with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a hybrid-game strategy to a MOEA and for a MPPS.
Resumo:
Background--The admission and assessment of patients for elective procedures is a task faced by all healthcare organisations that provide elective surgical services. Several different strategies have been used to facilitate the management of these tasks. Nurse-led preadmission clinics or services have been implemented in many health services as one of these management strategies; however their effectiveness has not been established. Objectives--The objective of this review was to examine the available research on the effectiveness of nurse-led elective surgery preoperative assessment clinics or services on patient outcomes.--Results--Of the 19 included articles, there were 10 audits of patient and hospital data, 3 surveys or questionnaires, 3 descriptive studies, 1 action research design, 1 prospective observational study and 1 RCT. Five of ten studies reporting data on cancellations rates found that nurse-led preadmission services reduced the number of day-of-surgery cancellations. Non-attendance for surgery was also reduced, with nine studies reporting decreases in the number of patients failing to attend. Eight studies reporting data on patient or parent satisfaction found high levels of satisfaction with nurse-led preadmission services. Three of four studies investigating the effect of the nurse-led preadmission service on patient anxiety found a reduction in reported anxiety levels. Three studies found that preoperative preparation was enhanced by the use of a nurse-led preadmission service.--Conclusions--While all included studies reported evidence of effectiveness for nurse-led preadmission services on a wide range of outcomes for elective surgery patients, the lack of experimental trials means that the level of evidence is low, and further research is needed.--Implications for practice--Nurse-led preadmission services may be an effective strategy for reducing procedural cancellations, failure to attend for procedures, and patient anxiety, however currently the evidence level is low.
Resumo:
With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO2) and nitrogen oxides (NOx) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO2) and NOx using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NOx with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NOx with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NOx and CO2 (minimum mission fuel weight).
Resumo:
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.