988 resultados para nor-dihydroguaiaretic acid
Resumo:
Solvent-free desymmetrisation of meso-dialdehyde 1 with chiral 1-phenylethan-1-ol, led to preparation of 4-silyloxy-6-alkyloxytetrahydro-2H-pyran-2-one (+)-3a with a 96:4 d.r. Deprotected lactone (+)-19a and the related racemic lactones 16a-18a present a lactone moiety resembling the natural substrate of HMG-CoA reductase and their antifungal properties have been evaluated against the phytopathogenic fungi Botrytis cinerea and Colletotrichum gloeosporioides. These compounds were selectively active against B. cinerea, while inactive against C. gloeosporioides.
Resumo:
Solvent-free desymmetrisation of a meso-dialdehyde with chiral alcohols, led to preparation of 4-silyloxy-6-alkyloxytetrahydro-2H-pyran-2-one derivatives with a 96% de. This methodology, which yields the corresponding methyl nor-mevaldates with 99% ee, has been applied to the enantioselective synthesis of the (-)-(R) and (+)-(S) nor-mevalonic acid lactones.
Resumo:
Administration of ovalbumin by aerosol to sensitised rats produced a rapid (15 min) protein exudation in different airway tissues, as determined by Evans blue staining. This was associated with marked mast cell degranulation determined by histological examination, with there being no difference between mucosal and connective tissue mast cells. A 5-day administration regimen with compound 48/80 selectively depleted connective tissue mast cell (Positive to berberine staining) without modifying ovalbumin-induced plasma protein extravasation. Treatment of rats with dexamethasone (1 mg/kg, - 12 h) or nor-dihydroguaiaretic acid (30 mg/kg i.p., - 30 min) significantly reduced ovalbumin-induced protein extravasation and preserved mucosal mast cell morphology. Indomethacin (4 mg/kg i.v., - 30 min) exerted no effect on either parameter. In conclusion, we propose the mucosal mast cell as a target cell responsible at least partly for the inhibitory actions of known anti-inflammatory drugs. We suggest an involvement of endogenous leukotriene(s), but not prostanoid(s), in mucosal mast cell activation/degranulation. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
A real-time Fourier transform infrared spectroscopy (FTIRS) analysis of the products of methanol oxidation in a prototype direct-methanol fuel cell operating at high temperatures (150 to 185°C) is reported here. The methanol oxidation products on platinum black and platinum-ruthenium catalyst surfaces were determined as a function of the fuel cell operating temperature, current density, and methanol/water mole ratio. Neither formaldehyde nor formic acid was detected in anode exhaust gas at all cell operating conditions. The product distributions of methanol oxidation obtained by on-line FTIRS are consistent with our previous results obtained by on-line mass spectroscopy under similar conditions. With pure methanol in anode feed, methanaldimethylacetal was found to be the main product, methyl formate and CO were also found. However, when water was present in the anode feed, the main product was CO , and the formation of methanaldimethylacetal and methyl formate decreased significantly with increase of the water/methanol mole ratio. Increase of cell operating temperature enhanced the formation of CO and decreased the formation of methanaldimethylacetal and methyl formate. Pt/Ru catalyst is more active for methanol oxidation and has a higher selectivity toward CO formation than Pt-black. Nearly complete methanol oxidation, i.e., the product was almost exclusively CO , was achieved using a Pt/Ru catalyst and a water/methanol mole ratio of 2 or higher in the anode feed at a temperature of 185°C or above.
Resumo:
Enhanced phytoextraction proposes the use of soil amendments to increase the heavy-metal content of above-ground harvestable plant tissues. This study compares the effect of synthetic aminopolycarboxylic acids [ethylenediamine tetraacetatic acid (EDTA), nitriloacetic acid (NTA), and diethylenetriamine pentaacetic acid (DTPA)] with a number of biodegradable, low-molecular weight, organic acids (citric acid, ascorbic acid, oxalic acid, salicylic acid, and NH4 acetate) as potential soil amendments for enhancing phytoextraction of heavy metals (Cu, Zn, Cd, Pb, and Ni) by Zea mays. The treatments in this study were applied at a dose of 2 mmol/kg(-1) 1 d before sowing. To compare possible effects between presow and postgermination treatments, a second smaller experiment was conducted in which EDTA, citric acid, and NH4 acetate were added 10 d after germination as opposed to 1 d before sowing. The soil used in this screening was a moderately contaminated topsoil derived from a dredged sediment disposal site. This site has been in an oxidized state for more than 8 years before being used in this research. The high carbonate, high organic matter, and high clay content characteristic to this type of sediment are thought to suppress heavy-metal phytoavailability. Both EDTA and DTPA resulted in increased levels of heavy metals in the above-ground biomass. However, the observed increases in uptake were not as large as reported in the literature. Neither the NTA nor organic acid treatments had any significant effect on uptake when applied prior to sowing. This was attributed to the rapid mineralization of these substances and the relatively low doses applied. The generally low extraction observed in this experiment restricts the use of phytoextraction as an effective remediation alternative under the current conditions, with regard to amendments used, applied dose (2 mmol/kg(-1) soil), application time (presow), plant species (Zea mays), and sediment (calcareous clayey soil) under study.
Resumo:
We investigated seed dormancy and germination in Ficus lundellii Standl. (Moraceae), a native species of Mexico's Los Tuxtlas tropical rain forest. In an 8-h photoperiod at an alternating diurnal (16/8 h) temperature of 20/30 degrees C, germination was essentially complete (96%) within 28 days, whereas in darkness, all seeds remained dormant. Neither potassium nitrate (0.05-0.2%) applied continuously nor gibberellic acid applied either continuously (10-200 ppm) or as a 24 hour pretreatment (2000 ppm) induced germination in the dark. Germination in the light was not reduced by a 24-h hydrochloric acid (0.1-1%) pretreatment, but it was reduced both by a 24-h pretreatment with either H2O2 (0. 1-5 M) or 5% HCl, or by more than 5 days of storage at 40 degrees C (4.5% seed water content). In a study with a 2-dimensional temperature gradient plate, seeds germinated fully and rapidly in the light at a constant temperature of 30 degrees C, and fully but less rapidly in the light at alternating temperatures with low amplitudes (< 12 degrees C) about the optimal constant temperature. The base, optimal and ceiling temperatures for rate of germination were estimated as 13.8, 30.1 and 41.1 degrees C, respectively. In all temperature regimes, light was essential for the germination of F lundellii seeds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
15-Lipoxygenase 2 (15-LOX2) is a recently cloned human lipoxygenase that shows tissue-restricted expression in prostate, lung, skin, and cornea. The protein level and enzymatic activity of 15-LOX2 have been shown to be down-regulated in prostate cancers compared with normal and benign prostate tissues. We report the cloning and functional characterization of 15-LOX2 and its three splice variants (termed 15-LOX2sv-a, 15-LOX2sv-b, and 15-LOX2sv-c) from primary prostate epithelial (NHP) cells. Western blotting with multiple NHP cell strains and prostate cancer (PCa) cell lines reveals that the expression of 15-LOX2 is lost in all PCa cell lines, accompanied by decreased enzymatic activity. 15-LOX2 is expressed at multiple subcellular locations, including cytoplasm, cytoskeleton, cell-cell border, and nucleus. Surprisingly, the three splice variants of 15-LOX2 are mostly excluded from the nucleus. To elucidate the relationship between nuclear localization, enzymatic activity, and tumor suppressive functions, we established PCa cell clones stably expressing 15-LOX2 or 15-LOX2sv-b. The 15-LOX2 clones express 15-LOX2 in the nuclei and possess robust enzymatic activity, whereas 15-LOX2sv-b clones show neither nuclear protein localization nor arachidonic acid-metabolizing activity. Interestingly, both 15-LOX2- and 15-LOX2sv-b-stable clones proliferate much slower in vitro when compared with control clones. When orthotopically implanted in nude mouse prostate, both 15-LOX2 and 15-LOX2sv-b suppress PC3 tumor growth in vivo. Finally, cultured NHP cells lose the expression of putative stem/progenitor cell markers, slow down in proliferation, and enter senescence. Several pieces of evidence implicate 15-LOX2 plays a role in replicative senescence of NHP cells: (1) promoter activity and the mRNA and protein levels of 15-LOX2 and its splice variants are upregulated in serially passaged NHP cells, which precede replicative senescence and occur in a cell-autonomous manner; (2) PCa cells stably expressing 15-LOX2 or 15-LOX2sv-b show a passage-related senescence-like phenotype; (3) enforced expression of 15-LOX2 or 15-LOX2sv-b in young NHP cells induce partial cell-cycle arrest and senescence-like phenotypes. Together, these results suggest that 15-LOX2 suppress prostate tumor development and do not necessarily depend on arachidonic acid-metabolizing activity and nuclear localization. Also, 15-LOX2 may serve as an endogenous prostate senescence gene and its tumor-suppressing functions might be associated with its ability to induce cell senescence. ^
Resumo:
This article presents a method for making highly porous biodegradable scaffold that may ultimately be used for tissue engineering. Poly(L-lactic-co-1-caprolactone) acid (70:30) (PLCL) scaffold was produced using the solvent casting/leaching out method, which entails dissolving the polymer and adding a porogen that is then leached out by immersing the scaffold in distillated water. Tensile tests were performed for three types of scaffolds, namely pre-wetted, dried, and UV-irradiated scaffolds and their mechanical properties were measured. The prewetted PLCL scaffold possessed a modulus of elasticity 0.92+0.09 MPa, a tensile strength of 0.12+0.03 MPa and an ultimate strain of 23+5.3%. No significant differences in the modulus elasticity, tensile strength, nor ultimate strain were found between the pre-wetted, dried, and UV irradiated scaffolds. The PLCL scaffold was seeded by human fibroblasts in order to evaluate its biocompatibility by Alamar bluew assays. After 10 days of culture, the scaffolds showed good biocompatibility and allowed cell proliferation. However, the fibroblasts stayed essentially at the surface. This study shows the possibility to use the PLCL scaffold in dynamic mechanical conditions for tissue engineering
Resumo:
Rat testicular cells in culture produce several metalloproteinases including type IV collagenases (Sang et al. Biol Reprod 1990; 43:946-955, 956-964). We have now investigated the regulation of testicular cell type IV collagenase and other metalloprotemases in vitro. Soluble laminin stimulated Sertoli cell type IV collagenase mRNA levels. However, three peptides corresponding to different domains of the laminin molecule (CSRAKQAASIKVASADR, FALRGDNP, CLQDGDVRV) did not influence type IV collagenase mENA levels. Zyniographic analysis of medium collected from these cultures revealed that neither soluble laminin nor any of the peptides influenced 72-Wa type IV collagenase protein levels. However, peptide FALRGDNP resulted in both, a selective increase in two higher molecular-weight metalloprotemnases (83 kDa and 110 Wa and in an activation of the 72-Wa rat type IV collagenase. Interleukin-1, phorbol ester, testosterone, and FSH did not affect collagenase activation, lmmunocytochemical studies demonstrated that the addition of soluble laminin resulted in a redistribution of type IV collagenase from intracellular vesicles to the cell-substrate region beneath the cells. Peptide FALRGDNP induced a change from a vesicular to peripheral plasma membrane type of staining pattern. Zymography of plasma membrane preparations demonstrated triton-soluble gelatinases of 76 Wa, 83 Wa, and 110 Wa and a triton-insoluble gelatinase of 225 Wa, These results indicate that testicular cell type IV collagenase mRNA levels, enzyme activation, and distribution are influenced by laminin and RGD-containing peptides.
Resumo:
In order to understand the molecular mechanism of non-oxidative decarboxylation of aromatic acids observed in microbial systems, 2,3 dihydroxybenzoic acid (DHBA) decarboxylase from Image Image was purified to homogeneity by affinity chromatography. The enzyme (Mr 120 kDa) had four identical subunits (28 kDa each) and was specific for DHBA. It had a pH optimum of 5.2 and Km was 0.34mM. The decarboxylation did not require any cofactors, nor did the enzyme had any pyruvoyl group at the active site. The carboxyl group and hydroxyl group in the Image -position were required for activity. The preliminary spectroscopic properties of the enzyme are also reported.
Resumo:
An enzyme system which catalysed the conversion of anthranilic acid to catechol has been purified 20-fold from a cell-free leaf extract of Tecoma stans. The optimum substrate concentration was 10−3 M and optimum temperature for the reaction was 45°. The presence of a multi-enzyme system was inferred from inhibition studies. The formation of catechol was inhibited by Mg2+, Zn2+, and Co2+ ions, whereas anthranilic acid disappearance was not affected to the same extent. The effect of metal chelating agents like EDTA, cyanide and pyrophosphate showed a similar trend. PCMB inhibited catechol formation but had no effect on anthranilic acid disappearance. The reaction was not inhibited by catalase, nor was it activated by peroxide-donating systems. This ruled out the possibility of peroxidative type of reaction. The overall reaction is markedly activated by NADPH and THFA. This multi-enzyme was separated into three different components, by fractionation with Alumina Cγ and calcium phosphate gels. The overall reaction catalysed by these components can be represented as anthranilic acid→3-hydroxy anthranilic acid→o-aminophenol→catechol.
Resumo:
A novel method for the construction of tricyclo[5.3.1.0(1,5)]undecane and tricyclo[6.3.1.0(1,6)]dodecane frame work has been developed. Thus the alcohols 6, 18, 21 and 29 undergo Lewis acid-catalysed rearrangement to the tricyclic ketones 5, 19, 22 and 30. Dehydrogenation of 22 to the enone 23 proves the synchronous anti-migration of the methanobridge during the skeletal rearrangement. Finally, one carbon homologation of the ketones 5 and 19 leads to the syntheses of 2-norcedrene 4 and some analogues of funebrene 20 and 30.
Resumo:
The copper complex of the antituberculous drug, isonicotinic acid hydrazide (INH), inhibits the RNA-dependent DNA polymerase of Rous sarcoma virus and inactivates its ability to malignantly transform chick embryo cells. The INH-copper complex binds to the 70S genome RNA of Rous sarcoma virus (RSV), which may account for its ability to inhibit the RNA-dependent DNA polymerase. The complex binds RNA more effectively than DNA in contrast to M-IBT-copper complexes, which bind both types of nucleic acids equally. The homopolymers, poly rA and poly rU, are bound by the INH-copper complex to a greater extent than poly rC. Isonicotinic acid hydrazide alone and CuSO4 alone bind neither DNA, RNA, poly (rA), poly (rU), nor poly (rC). However, CuSO4 alone binds poly (rI); INH alone does not. In addition to viral DNA synthesis, chick-embryo cell DNA synthesis is inhibited by the INH-copper complex. The extent of inhibition of cellular DNA synthesis is greater than that of cellular RNA and protein synthesis. No selective inhibition of transformation in cells previously infected with Rous sarcoma virus is observed.