995 resultados para noninvasive method
Resumo:
Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g.,rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperaturedependent viscosity. Results show that average RMS errors are ∼5%–7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck’09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ∼10°C–15°C effluent reach ∼5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2‐D flows where background objects have a small spatial scale, such as sand or gravel
Resumo:
Prompt and accurate detection of rejection prior to pathological changes after organ transplantation is vital for monitoring rejections. Although biopsy remains the current gold standard for rejection diagnosis, it is an invasive method and cannot be repeated daily. Thus, noninvasive monitoring methods are needed. In this study, by introducing an IL-2 neutralizing monoclonal antibody (IL-2 N-mAb) and immunosuppressants into the culture with the presence of specific stimulators and activated lymphocytes, an activated lymphocyte-specific assay (ALSA) system was established to detect the specific activated lymphocytes. This assay demonstrated that the suppression in the ALSA test was closely related to the existence of specific activated lymphocytes. The ALSA test was applied to 47 heart graft recipients and the proliferation of activated lymphocytes from all rejection recipients proven by endomyocardial biopsies was found to be inhibited by spleen cells from the corresponding donors, suggesting that this suppression could reflect the existence of activated lymphocytes against donor antigens, and thus the rejection of a heart graft. The sensitivity of the ALSA test in these 47 heart graft recipients was 100%; however, the specificity was only 37.5%. It was also demonstrated that IL-2 N-mAb was indispensible, and the proper culture time courses and concentrations of stimulators were essential for the ALSA test. This preliminary study with 47 grafts revealed that the ALSA test was a promising noninvasive tool, which could be used in vitro to assist with the diagnosis of rejection post-heart transplantation.
Resumo:
INTRODUCTION The clinical tests currently used to assess spinal biomechanics preoperatively are unable to assess true mechanical spinal stiffness. They rely on spinal displacement without considering the force required to deform a patient's spine. We propose a preoperative method for noninvasively quantifying the three-dimensional patient-specific stiffness of the spines of adolescent idiopathic scoliosis patients. METHODS The technique combines a novel clinical test with numerical optimization of a finite element model of the patient's spine. RESULTS A pilot study conducted on five patients showed that the model was able to provide accurate 3D reconstruction of the spine's midline and predict the spine's stiffness for each patient in flexion, bending, and rotation. Statistically significant variation of spinal stiffness was observed between the patients. CONCLUSION This result confirms that spinal biomechanics is patient-specific, which should be taken into consideration to individualize surgical treatment.
Resumo:
The role of sunscreens in preventing skin cancer and melanoma is the focus of ongoing research. Currently, there is no objective measure which can be used in field studies to determine whether a person has applied sunscreen to their skin, and researchers must use indirect assessments such as questionnaires. We sought to develop a rapid, non-invasive method for identifying sunscreen on the skin for use in epidemiological studies. Our basic method is to swab the skin, elute any residues which have been adsorbed onto the swab by rinsing in ethanol, and submit the eluted washings for spectrophotometric analysis. In a controlled study, we applied 0.1 ml of sunscreen to a 50 cm(2) grid on both forearms of 21 volunteers. Each forearm was allocated one of 10 different sunscreen brands. The skin was swabbed after intervals of 20 min, 1 h, 2 h and 4 h. In a field study conducted among 12 children aged 2-4 years attending a child care centre, sunscreen was applied to the faces of half the children. Swabs were then taken from the face and back of all children without knowledge of sunscreen status. In the controlled study, sunscreen was clearly detectable up to 2 h after application for all brands containing organic sunscreen, and marginally detectable at 4 h. In the field study, this method correctly identified all children with and without sunscreen. We conclude that spectrophotometric analysis of skin swabs can reliably detect the presence of sunscreen on the skin for up to 2 It after application. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a musculoskeletal pathology. It is a complex spinal curvature in a 3-D space that also affects the appearance of the trunk. The clinical follow-up of AIS is decisive for its management. Currently, the Cobb angle, which is measured from full spine radiography, is the most common indicator of the scoliosis progression. However, cumulative exposure to X-rays radiation increases the risk for certain cancers. Thus, a noninvasive method for the identification of the scoliosis progression from trunk shape analysis would be helpful. In this study, a statistical model is built from a set of healthy subjects using independent component analysis and genetic algorithm. Based on this model, a representation of each scoliotic trunk from a set of AIS patients is computed and the difference between two successive acquisitions is used to determine if the scoliosis has progressed or not. This study was conducted on 58 subjects comprising 28 healthy subjects and 30 AIS patients who had trunk surface acquisitions in upright standing posture. The model detects 93% of the progressive cases and 80% of the nonprogressive cases. Thus, the rate of false negatives, representing the proportion of undetected progressions, is very low, only 7%. This study shows that it is possible to perform a scoliotic patient's follow-up using 3-D trunk image analysis, which is based on a noninvasive acquisition technique.
Pharyngeal clearance and pharyngeal transit time determined by a biomagnetic method in normal humans
Resumo:
Clearance and transit time are parameters of great value in studies of digestive transit. Such parameters are nowadays obtained by means of scintigraphy and videofluoroscopy, with each technique having advantages and disadvantages. In this study we present a new, noninvasive method to study swallowing pharyngeal clearance (PC) and pharyngeal transit time (PTT). This new method is based on variations of magnetic flux produced by a magnetic bolus passing through the pharynx and detected by an AC biosusceptometer (ACB). These measurements may be performed in a simple way. cause no discomfort. and do not use radiation. We measured PC in 8 volunteers (7 males and I female. 23-33 years old) and PTT in 8 other volunteers (7 males and I female. 21-29 years old). PC was 0.82 +/- 0.10 s (mean +/- SD) and PTT was 0.75 +/- 0.03 s. The results were similar for PC but longer for PTT than those determined by means of other techniques. We conclude that the biomagnetic method can be used to evaluate PC and PTT.
Resumo:
Bioelectrical impedance analysis has found extensive application as a simple noninvasive method for the assessment of body fluid volumes, The measured impedance is, however, not only related to the volume of fluid but also to its inherent resistivity. The primary determinant of the resistivities of body fluids is the concentration of ions. The aim of this study was to investigate the sensitivity of bioelectrical impedance analysis to bodily ion status. Whole body impedance over a range of frequencies (4-1012 kHz) of rats was measured during infusion of various concentrations of saline into rats concomitant with measurement of total body and intracellular water by tracer dilution techniques. Extracellular resistance (R-o), intracellular resistance (R-i) and impedance at the characteristic frequency (Z(c)) were calculated. R-o and Z(c) were used to predict extracellular and total body water respectively using previously published formulae. The results showed that whilst R-o and Z(c) decreased proportionately to the amount of NaCl infused, R-i increased only slightly. Impedances at the end of infusion predicted increases iu TBW and ECW of approximately 4-6% despite a volume increase of less than 0.5% in TBW due to the volume of fluid infused. These data are discussed in relation to the assumption of constant resistivity in the prediction of fluid volumes from impedance data.
Resumo:
Background: Contact endoscopy (CE) was initially described as a method used in the analysis of uterine and vocal folds histology. The first nasal cavity CE studies achieved promising results regarding its use for the differentiation between benign and malignant lesions, considering that biopsy might cause some complications, especially bleeding. This study described and compared the findings of CE on inverted papilloma and nasosinusal squamous cell carcinoma (SCC) and tested the effectiveness of this exam as a noninvasive method for in vivo differentiation between these tumors. Methods: The patients included in this study were divided into group A, patients diagnosed with inverted papilloma, and group B, patients diagnosed with SCC. CE results were compared among themselves. CE images were presented to examiners not experienced with the method. Results: Twenty-two patients were examined, 13 in group A and 9 in group B. The main relevant differences in CE findings between those two groups were corkscrew vessels, presence of mitoses, keratinization and nuclear pleomorphism in carcinoma, and vacuolated cells in papilloma. The examiners were capable of defining the diagnosis of these nasal tumors only based on CE images. Conclusion: CE may be a useful noninvasive exam to be used in the in vivo diagnosis of inverted papilloma and nasosinusal SCC, which may enable better preoperative planning. (Am J Rhinol Allergy 24, 210-214, 2010; doi: 10.2500/ajra.2010.24.3467)
Resumo:
Background Chronic aortic valve disease (AVD) is characterized by progressive accumulation of interstitial myocardial fibrosis (MF). However, assessment of MF accumulation has only been possible through histologic analyses of endomyocardial biopsies. We sought to evaluate contrast-enhanced magnetic resonance imaging (ce-MRI) as a noninvasive method to identify the presence of increased MF in patients with severe AVD. Methods Seventy patients scheduled to undergo aortic valve replacement surgery were examined by cine and ce-MRI in a 1.5-T scanner. Cine images were used for the assessment of left ventricular (LV) volumes, mass, and function. Delayed-enhancement images were used to characterize the regions of MF. In addition, histologic analyses of myocardial samples obtained during aortic valve replacement surgery were used for direct quantification of interstitial MF. Ten additional subjects who died of noncardiac causes served as controls for the quantitative histologic analyses. Results Interstitial MF determined by histopathologic analysis was higher in patients with AVID than in controls (2.7% +/- 2.0% vs 0.6% +/- 0.2%, P =.001). When compared with histopathologic results, ce-MRI demonstrated a sensitivity of 74%, a specificity of 81%, and an accuracy of 76% to identify AVD patients with increased interstitial MF There was a significant inverse correlation between interstitial MF and LV ejection fraction (r = -0.67, P <.0001). Accordingly, patients with identifiable focal regions of MF by ce-MRI exhibited worse LV systolic function than those without MF (45% +/- 14% vs 65% +/- 14%, P <.0001). Conclusions Contrast-enhanced MRI allows for the noninvasive detection of focal regions of MF in patients with severe AVD. Moreover, patients with identifiable MF by ce-MRI exhibited worse LV functional parameters. (Am Heart J 2009; 157:361-8.)
Resumo:
Este documento apresenta uma avaliação sobre o uso dos simuladores fisiológicos como padrão para avaliação metrológica dos esfigmomanómetros automáticos na estimação da pressão sanguínea pelo método não invasivo (PNI). O presente estudo procurou avaliar o enquadramento destes equipamentos com os procedimentos das normas e recomendações usadas para apreciação metrológica dos esfigmomanómetros digitais. No contexto da prática metrológica existente determinou-se a existência de uma oportunidade de melhoria nos processos relacionados. O trabalho procurou obter resposta a diversas questões, relacionando a medição da pressão pelo método não invasivo, com o uso dos simuladores fisiológicos, o contexto em que estes podem ser usados, as formas de simulação, as medições e os resultados, procurando a perspetiva metrológica como enquadramento. As recomendações existentes [1] [2] [3] [4] [5] [6] [7] [8], são muito claras nos procedimentos, validação e nos desvios permitidos para os monitores da tensão arterial (MTA), equipamento que permite a avaliação dos parâmetros fisiológicos do paciente, no entanto, quando se pretende avançar para outro domínio, como o do uso dos simuladores, em particular para a simulação da PNI, não existem recomendações ou normas tão claras, e não existe sobretudo um padrão de referência que imite a natureza dinâmica que caracteriza a pressão sanguínea. O trabalho procurou ainda estabelecer a ligação entre o método clássico de auscultação (o principio de determinação da PS), a técnica digital de medição e os simuladores, para uma melhor compreensão do que é a pressão sanguínea, e como relacionar a problemática da simulação e a de um padrão de referência. Neste trabalho estão ainda presentes abordagens a diversos tópicos, como as validações clínicas, acessórios, ou a metrologia e que influenciam no final os equipamentos e o contexto que se pretende avaliar. Os diversos equipamentos testados procuraram conter amostras diversificadas, quer para os MTA de uso profissional ou doméstico, assim como para os simuladores. A avaliação dos simuladores foi realizada contra um grupo de MTAs. Foi testada a influência na medição, causada pela mudança de acessórios, ou seja, nos resultados, merecendo consideração pela perspetiva metrológica. No resumo dos testes e do estudo sobre este tema, verificou-se que esta tipologia de equipamentos pode contribuir como complemento do processo de calibração típico (estático). Não constitui por si só um método alternativo, mas permitiu estimar possíveis limites de erro e desvio padrão a partir da observação dos resultados práticos, limites esses inferiores aos processos de validação clínica. Atendendo às particularidades, estimou-se como desvio aceitável um erro mais desvio padrão de 5 + 3 mmHg para o processo de simulação. Contudo considera-se ainda importante os testes adicionais em que o simulador permite, ao verificar as medidas de segurança implementadas no equipamento e a condição dos acessórios, que como verificado afetam os resultados. No entanto nem todos os simuladores se mostram adequados a este processo pelo que a qualidade da seleção do equipamento para este fim pode eventualmente reduzir ainda mais os possíveis limites.
Resumo:
AbstractBackground:Cardiovascular disease is a leading cause of death in the world and in Brazil. Myocardial scintigraphy is an important noninvasive method for detecting ischemia in symptomatic patients, but its use in asymptomatic ones or those with atypical symptoms is yet to be defined.Objective:To verify the presence of major cardiac events in asymptomatic patients or those with atypical symptoms (atypical chest pain or dyspnea) that underwent myocardial scintigraphy (MS), over a period of 8 years. Secondary objectives were to identify cardiac risk factors associated with myocardial scintigraphy abnormalities and possible predictors for major cardiac events in this group.Methods:This was a retrospective, observational study using the medical records of 892 patients that underwent myocardial scintigraphy between 2005 and 2011 and who were followed until 2013 for assessment of major cardiac events and risk factors associated with myocardial scintigraphy abnormalities. Statistical analysis was performed by Fisher’s exact test, logistic regression and Kaplan-Meyer survival curves, with statistical significance being set at p ≤ 0.05.Results:Of the total sample, 52.1% were men, 86.9% were hypertensive, 72.4% had hyperlipidemia, 33.6% were diabetic, and 12.2% were smokers; 44.5% had known coronary artery disease; and 70% had high Framingham score, 21.8% had moderate and 8% had low risk. Of the myocardial scintigraphies, 58.6% were normal, 26.1% suggestive of fibrosis and 15.3% suggestive of ischemia. At evolution, 13 patients (1.5%) had non-fatal myocardial infarction and six individuals (0.7%) died. The group with normal myocardial scintigraphy showed longer period of time free of major cardiac events, non-fatal myocardial infarction (p = 0.036) and death. Fibrosis in the myocardial scintigraphy determined a 2.4-fold increased risk of non-fatal myocardial infarction and five-fold higher risk of death (odds ratio: 2.4 and 5.7, respectively; p = 0.043).Conclusion:The occurrence of major cardiac events in 8 years was small. Patients with fibrosis at MS had more major events, whereas patients with normal MS result had fewer major cardiac events, with higher survival.
Resumo:
OBJECTIVES: Perioperative fluid accumulation determination is a challenge for the clinician. Bioelectrical impedance analysis (BIA) is a noninvasive method based on the electrical properties of tissues, which can assess body fluid compartments. The study aimed at assessing their changes in three types of surgery (thoracic, abdominal, and intracranial) requiring various regimens of fluid administration. DESIGN: Prospective descriptive trial. PATIENTS: A total of 26 patients scheduled for elective surgery were separated into three groups according to site of surgery: thoracic (n = 8), abdominal aortic (n = 8), and brain surgery (n = 10). SETTING: University teaching hospital. INTERVENTION: None. MEASUREMENTS: Whole body, segmental (arm, trunk, and legs) BIA at multiple frequency (0.5, 50, 100 kHz) was used to assess perioperative fluid accumulation after surgery. The fluid balances were calculated from the charts. RESULTS: The patients were aged 62+/-4 yrs. Fluid balances were 4.8+/-1.0 L, 4.1+/-0.5 L, and 1.9+/-0.3 L, respectively, in the three groups. In trunk surgery patients, fluid accumulation was detected as a drop in impedance in the operated area at all frequencies. In the operated area, there was an expansion of both intra- and extracellular compartments. A reduction in high frequencies' impedance in the legs was only detected after aortic surgery. Fluid accumulation and trunk impedance changes were strongly correlated. Neurosurgery only induced minor body fluid changes. CONCLUSIONS: Segmental BIA is able to detect and localize perioperative fluid accumulation. It may become a bedside tool to quantify and to localize fluid accumulation.
Resumo:
In this study, hypothalamic activation was performed by dehydration-induced anorexia (DIA) and overnight food suppression (OFS) in female rats. The assessment of the hypothalamic response to these challenges by manganese-enhanced MRI showed increased neuronal activity in the paraventricular nuclei (PVN) and lateral hypothalamus (LH), both known to be areas involved in the regulation of food intake. The effects of DIA and OFS were compared by generating T-score maps. Increased neuronal activation was detected in the PVN and LH of DIA rats relative to OFS rats. In addition, the neurochemical profile of the PVN and LH were measured by (1) H MRS at 14.1T. Significant increases in metabolite levels were measured in DIA and OFS relative to control rats. Statistically significant increases in γ-aminobutyric acid were found in DIA (p=0.0007) and OFS (p<0.001) relative to control rats. Lactate increased significantly in DIA (p=0.03), but not in OFS, rats. This work shows that manganese-enhanced MRI coupled to (1) H MRS at high field is a promising noninvasive method for the investigation of the neural pathways and mechanisms involved in the control of food intake, in the autonomic and endocrine control of energy metabolism and in the regulation of body weight.
Resumo:
OBJECTIVE:: To evaluate the chromatic pupillary response as a means of assessing outer and inner retinal function in patients with retinitis pigmentosa (RP). DESIGN:: Evaluation of diagnostic technology. PARTICIPANTS:: Thirty-two patients with RP and visual loss and 43 normal subjects. METHODS:: Patients were tested with a chromatic pupillometer using red and blue lights (1, 10, and 100 cd/m(2)), and their pupil responses were compared with those from 43 normal subjects (reported previously). Visual field and electroretinography (ERG) results were examined and compared with the pupil responses. MAIN OUTCOME MEASURES:: The percent pupil contraction of the transient response to a low-intensity (1 cd/m(2)) blue light and high-intensity (100 cd/m(2)) red light and the sustained response to a high-intensity blue light was calculated for 1 eye of each subject. RESULTS:: The pupil responses to red and blue light at all intensities were recordable in all patients except 1, whose pupil responded only to bright blue light. There was a significant difference of the pupil response between patients with RP and normal subjects in testing conditions that emphasized rod (1 cd/m(2) blue light) or cone (100 cd/m(2) red light) contribution (P<0.001). Patients with a non-recordable scotopic ERG showed significantly reduced pupil responses (P<0.001) to low-intensity blue light (1 cd/m(2)). Patients with a non-recordable or abnormal photopic ERG showed significantly reduced pupil responses (P<0.05) to high-intensity red light (100 cd/m(2)). Patients with a nonrecordable ERG had the most visual field loss and reduced pupil responses. Unexpectedly, patients with RP showed a slower re-dilation of the pupil after termination of bright blue light compared with red light, a pattern not observed in normal subjects. CONCLUSIONS:: Pupil responses to red and blue light stimuli weighted to favor cone or rod input are significantly reduced in patients with RP but are still recordable in patients having a non-recordable ERG. In addition, outer photoreceptor disease appears to unmask a post-illumination pupillary constriction to bright blue light, most likely mediated by intrinsic activation of melanopsin ganglion cells. Chromatic pupillometry provides a novel, noninvasive method for following retinal functional status, particularly in patients with severe RP and non-recordable ERG. FINANCIAL DISCLOSURE(S):: Proprietary or commercial disclosure may be found after the references.