985 resultados para nitrogen application frequency


Relevância:

100.00% 100.00%

Publicador:

Resumo:

No-tillage (NT) practice, where straw is retained on the soil surface, is increasingly being used in cereal cropping systems in Australia and elsewhere. Compared to conventional tillage (CT), where straw is mixed with the ploughed soil, NT practice may reduce straw decomposition, increase nitrogen immobilisation and increase organic carbon in the soil. This study examined 15N-labelled wheat straw (stubble) decomposition in four treatments (NT v. CT, with N rates of 0 and 75 kg/ha.year) and assessed the tillage and fertiliser N effects on mineral N and organic C and N levels over a 10-year period in a field experiment. NT practice decreased the rate of straw decomposition while fertiliser N application increased it. However, there was no tillage practice x N interaction. The mean residence time of the straw N in soil was more than twice as long under the NT (1.2 years) as compared to the CT practice (0.5 years). In comparison, differences in mean residence time due to N fertiliser treatment were small. However, tillage had generally very little effect on either the amounts of mineral N at sowing or soil organic C (and N) over the study period. While application of N fertiliser increased mineral N, it had very little effect on organic C over a 10-year period. Relatively rapid decomposition of straw and short mean residence time of straw N in a Vertisol is likely to have very little long-term effect on N immobilisation and organic C level in an annual cereal cropping system in a subtropical, semiarid environment. Thus, changing the tillage practice from CT to NT may not necessitate additional N requirement unless use is made of additional stored water in the soil or mineral N loss due to increased leaching is compensated for in N supply to crops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between food security and sustainable land use is considered to be of the uttermost importance to increase yields without having to increase the agricultural land area over which crops are grown. In the present study nitrogen concentration (25 and 85 kg ha-1) and planting density (6.7, 10 and 25 plants m-2) were investigated for their effect on whole plant physiology and pod seed yield in kale (Brassica oleracea), to determine if the fruit (pod) yield could be manipulated agronomically. Nitrogen concentration did not significantly affect seed yield and it is therefore recommended that the lower concentration be used commercially. Conversely planting density did have a significant effect with increases in seed yield observed at the highest planting density of 25 plants m-2, therefore this high planting density would be recommended commercially to maximise area efficiency, highlighting that simple agronomic changes are capable of increasing crop yields over a set area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen application on the cover and the maintenance of straw, conducted by direct seeding, should meet the needs of agriculture and promote soil conservation. This study evaluates the effect of pre-sowing nitrogen application in cotton crops and cover crops by direct seeding, on the development and yield of cotton. It was conducted in the municipality of Selviria-MS during the agricultural years 2005/06, 2006/07 and 2007/08. The experimental design used was a randomized block design consisting of three cover crops (forage turnip, black oat and white oat) and four nitrogen doses (0, 30, 60 and 90 kg of N ha(-1)) in pre-sowing of cotton. In April 2006, April 2007 and April 2008, the assessments of plant development and also harvesting of the experimental plots of cotton cultivars were conducted. The results showed that after planting the cover crops, the yield and development and the heights of cotton plants increased with the use of pre-sowing N of 90 kg ha(-1), also showing that the forage turnip is a coverage plant that provides increased cotton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Farmers understand it is best to apply nitrogen to the crop at or right before rapid growth occurs. However, 100 percent in-season nitrogen applications are faulted because of potential for unfavorable weather conditions delaying applications and subsequent deficiency occurring. This trial looks at how split nitrogen applications can be used to address environmental risks of pre-plant nitrogen application as well as unfavorable application conditions in-season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased grain yield in response to high rates of application of nitrogen (N) fertiliser is often limited by increased spikelet sterility, particularly under low temperature conditions in the New South Wales ( NSW) rice industry. In 3 field experiments, different N rates were applied for different sowing dates to investigate the interaction between N rate and temperature during microspore development on spikelet sterility and grain yield. In one experiment the effect of water depth on spikelet sterility was also investigated. Engorged pollen production, spikelet sterility, and yield and its components were recorded. Application of N affected a few different processes that lead into spikelet sterility. Application of N at both pre-flood (PF) and panicle initiation ( PI) significantly reduced the number of engorged pollen grains per anther, which was negatively correlated with spikelet sterility. Application of N and low temperature during microspore development with the absence of deep water also decreased pollen engorgement efficiency ( the percentage of pollen grains that were engorged). Application of N further increased spikelet density, which, in turn, increased both spikelet sterility and grain yield. The combined effect of spikelet density and low temperature during microspore development explained the 44% of variation in the number of engorged pollen grains per anther. Grain yield was decreased by low temperature during microspore development in the shallow water when N was applied. Spikelet sterility as a result of late sowing was strongly correlated with minimum temperature during flowering. It is concluded that N application reduced pollen number per anther as a result of increased spikelet density, and this made the spikelets more susceptible to low temperature, causing increased spikelet sterility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased rates of nitrogen fertilizer application lead to increased spikelet sterility. A field experiment was conducted to investigate the effects on engorged pollen production and spikelet sterility, of nitrogen and assimilate availability during microspore development, in two rice cultivars (Doongara and Amaroo) grown under two different water depths. Despite the temperature not being low enough during microspore development to cause spikelet sterility, the number of engorged pollen grains was lower in cv. Doongara than in cv. Amaroo. Nitrogen application decreased the number of engorged pollen grains per anther through increased spikelet density. Nitrogen application increased spikelet sterility as a result of increased panicle density showing pronounced indirect effect of N on spikelet sterility. Engorged pollen number was also closely related (r = -0.636*) to the nitrogen content of the leaf blade, indicating a direct negative effect of plant N status on engorged pollen production. The results suggest that the intrinsic pollen producing ability is the key element in the difference in cold tolerance between the two cultivars, particularly under high N rates. Opening the canopy for increased solar radiation interception by the treated plants increased the level of engorged pollen, indicating the importance of immediate assimilate availability for engorged pollen production. Shading reduced crop growth rate, but did not effect engorged pollen production. There was no effect of variation in assimilates production on spikelet sterility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本研究采用室外盆栽试验,模拟运动场坪床结构,研究不同氮肥种类、不同施氮频率、施氮和降雨时间间隔对草地早熟禾草坪质量、草坪生长和无机氮淋洗的影响,并探讨在北京地区气候条件下,草坪在不同氮肥管理措施下的氮素去向及环境风险。主要结论如下: 1. 氮肥种类对草坪质量和草坪生长有显著影响。试验前期(春季),草坪颜色和密度质量、草坪草生长速度和草屑全氮含量的排序为尿素 > CU3M(自研包膜尿素)> IBDU(进口缓释肥),而试验后期(秋季)则为CU3M = IBDU > 尿素。草坪合格颜色质量持续时间和成坪速度的排序为尿素 > CU3M > IBDU。在新建草坪选择缓释肥进行早春施肥时,应混施一定比例的速效肥。 2. 施氮频率对草坪外观质量评分、草坪生长速度、草屑总生物量、草屑全氮含量和根系分布状况有显著影响。U6处理的草坪合格颜色质量持续时间最长,增加施氮频率没有降低新建草坪生长速度和草屑全氮含量的波动幅度。 3. 夏季(6~8月)渗漏液体积占全年的比例最高,为75.0%~82.4%。新建草坪初期的淋洗风险较大,渗漏液硝态氮浓度在第1次超过10 mg N•L-1,尿素分6次施用可降低这次的渗漏液硝态氮浓度。在合理施氮量内,草坪成熟后的无机氮淋洗量很小,且草坪对雨水中的无机氮有吸收和过滤作用。 4. 春季施用氮肥的吸收利用率为48.0%~72.6%,草屑吸收量最高,占38.5%~48.7%,地上部吸收量占19.6%~22.1%,根系吸收量在7.3%以下。施肥处理的无机氮淋洗损失量仅为0.23~0.42 g N•m-2,与CK无显著差异,草地早熟禾12 g N•m-2的年施氮量对环境的风险很小。 5. 初秋施氮5 g N•m-2,可以保持草地早熟禾秋季的良好颜色和密度质量,草坪草氮素吸收利用率高达87.4%~99.7%,其中草屑带走量占24.3%~34.2%,地上部吸收量占43.3%~59.6%,根系吸收量占14.2%~19.1%。 6. 施氮和模拟降雨的时间间隔对渗漏液硝态氮浓度有显著影响,间隔6 d和9 d模拟降雨后的渗漏液硝态氮浓度最高,显著高于间隔3 d和12 d模拟降雨的结果。初秋合理施氮的渗漏液硝态氮浓度在1.0 mg N•L-1 以下,环境风险较小。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In wastewater treatment plants based on anaerobic digestion, supernatant and outflows from sludge dewatering systems contain significantly high amount of ammonium. Generally, these waters are returned to the head of wastewater treatment plant (WWTP), thereby increasing the total nitrogen load of the influent flow. Ammonium from these waters can be recovered and commercially utilised using novel ion-exchange materials. Mackinnon et al. have described an approach for removal and recovery of ammonium from side stream centrate returns obtained from anaerobic digester of a typical WWTP. Most of the ammonium from side streams can potentially be removed, which significantly reduces overall inlet demand at a WWTP. However, the extent of reduction achieved depends on the level of ammonium and flow-rate in the side stream. The exchange efficiency of the ion-exchange material, MesoLite, used in the ammonium recovery process deteriorates with long-term use due to mechanical degradation and use of regenerant. To ensure that a sustainable process is utilised a range of potential applications for this “spent” MesoLite have been evaluated. The primary focus of evaluations has been use of ammonium-loaded MesoLite as a source of nitrogen and growth medium for plants. A MesoLite fertiliser has advantage over soluble fertilisers in that N is held on an insoluble matrix and is gradually released according to exchange equilibria. Many conventional N fertilisers are water-soluble and thus, instantly release all applied N into the soil solution. Loss of nutrient commonly occurs through volatilisation and/or leaching. On average, up to half of the N delivered by a typical soluble fertiliser can be lost through these processes. In this context, use of ammonium-loaded MesoLite as a fertiliser has been evaluated using standard greenhouse and field-based experiments for low fertility soils. Rye grass, a suitable test species for greenhouse trials, was grown in 1kg pots over a period of several weeks with regular irrigation. Nitrogen was applied at a range of rates using a chemical fertiliser as a control and using two MesoLite fertilisers. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks, and dry plant mass and N concentrations were determined. At all nitrogen application rates, ammonium-loaded MesoLite produced higher plant mass than plants fertilised by the chemical fertiliser. The lower fertiliser effectiveness of the chemical fertliser is attributed to possible loss of some N through volatilisation. The MesoLite fertilisers did not show any adverse effect on availability of macro and trace nutrients, as shown by lack of deficiency symptoms, dry matter yield and plant analyses. Nitrogen loaded on to MesoLite in the form of exchanged ammonium is readily available to plants while remaining protected from losses via leaching and volatilisation. Spent MesoLite appears to be a suitable and effective fertiliser for a wide range of soils, particularly sandy soils with poor nutrient holding capacity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

APSIM-ORYZA is a new functionality developed in the APSIM framework to simulate rice production while addressing management issues such as fertilisation and transplanting, which are particularly important in Korean agriculture. To validate the model for Korean rice varieties and field conditions, the measured yields and flowering times from three field experiments conducted by the Gyeonggi Agricultural Research and Extension Services (GARES) in Korea were compared against the simulated outputs for different management practices and rice varieties. Simulated yields of early-, mid- and mid-to-late-maturing varieties of rice grown in a continuous rice cropping system from 1997 to 2004 showed close agreement with the measured data. Similar results were also found for yields simulated under seven levels of nitrogen application. When different transplanting times were modelled, simulated flowering times ranged from within 3 days of the measured values for the early-maturing varieties, to up to 9 days after the measured dates for the mid- and especially mid-to-late-maturing varieties. This was associated with highly variable simulated yields which correlated poorly with the measured data. This suggests the need to accurately calibrate the photoperiod sensitivity parameters of the model for the photoperiod-sensitive rice varieties in Korea.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interest in cashew production in Australia has been stimulated by domestic and export market opportunities and suitability of large areas of tropical Australia. Economic models indicate that cashew production is profitable at 2.8 t ha-1 nut-in-shell (NIS). Balanced plant nutrition is essential to achieve economic yields in Australia, with nitrogen (N) of particular importance because of its capacity to modify growth, affect nut yield and cause environmental degradation through soil acidification and off-site contamination. The study on a commercial cashew plantation at Dimbulah, Australia, investigated the effect of N rate and timing on cashew growth, nut production, N leaching and soil chemical properties over five growth cycles (1995-1999). Nitrogen was applied during the main periods of vegetative (December-April) and reproductive (June-October) growth. Commercial NIS yields (up to 4.4 t ha-1 from individual trees) that exceeded the economic threshold of 2.8 t ha-1 were achieved. The yield response was mainly determined by canopy size as mean nut weight, panicle density and nuts per panicle were largely unaffected by N treatments. Nitrogen application confined to the main period of vegetative growth (December-April) produced a seasonal growth pattern that corresponded most consistently with highest NIS yield. This N timing also reduced late season flowering and undesirable post-November nut drop. Higher yields were not produced at N rates greater than 17 g m-2 of canopy surface area (equating to 210 kg N ha-1 for mature size trees). High yields were attained when N concentrations in Mveg leaves in May-June were about 2%, but this assessment occurs at a time when it is not feasible to correct N deficiency. The Mflor leaf of the preceding November, used in conjunction with the Mveg leaf, was proposed as a diagnostic tool to guide N rate decisions. Leaching of nitrate-N and acidification of the soil profile was recorded to 0.9 m. This is an environmental and sustainability hazard, and demonstrates that improved methods of N management are required.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Assimilation of nitrate and various other inorganic nitrogen compounds by different yeasts was investigated. Nitrate, nitrite, hydroxylamine, hydrazine, ammonium sulphate, urea and L-asparagine were tested as sole sources of nitrogen for the growth of Candida albicans, C. pelliculosa, Debaryomyces hansenii, Saccharomyces cerevisiae, C. tropicalis, and C. utilis. Ammonium sulphate and L-asparagine supported the growth of all the yeasts tested except D. hansenii while hydroxylamine and hydrazine failed to support the growth of any. Nitrate and nitrite were assimilated only by C. utilis. Nitrate utilization by C. utilis was also accompanied by the enzymatic activities of NAD(P)H: nitrate oxidoreductase (EC 1.6.6.2) and NAD(P)H: nitrite oxidoreductase (EC 1.6.6.4), but not reduced methyl viologen-or FAD-nitrate oxidoreductases (EC 1.7.99.4). It is demonstrated here that nitrate and nitrite reductase activities are responsible for the ability of C. utilis to assimilate primary nitrogen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated the photoluminescence (PL) properties of nitrogen-doped ZnSe epilayers grown by molecular beam epitaxy using a nitrogen radio frequency-plasma source. The PL data shows that the relative intensity of the donor-bound exciton (I-2) emission to the acceptor-bound exciton (I-1) emission strongly depends on both the excitation power and the temperature. This result is explained by a thermalization model of the bound exciton which involved in the capture and emission between the neutral donor bound exciton, the neutral acceptor bound exciton and the free exciton. Quantitative analysis with the proposed mechanism is in good agreement with the experimental data. (C) 1999 American Institute of Physics. [S0021-8979(99)09102-1].