854 resultados para nerve migration
Resumo:
Purpose Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic technique, which has been shown to diagnose and stratify the severity of diabetic neuropathy. Current morphometric techniques assess individual static images of the subbasal nerve plexus; this work explores the potential for non-invasive assessment of the wide-field morphology and dynamic changes of this plexus in vivo. Methods In this pilot study, laser scanning CCM was used to acquire maps (using a dynamic fixation target and semi-automated tiling software) of the central corneal sub-basal nerve plexus in 4 diabetic patients with and 6 without neuropathy and in 2 control subjects. Nerve migration was measured in an additional 7 diabetic patients with neuropathy, 4 without neuropathy and in 2 control subjects by repeating a modified version of the mapping procedure within 2-8 weeks, thus facilitating re-identification of distinctive nerve landmarks in the 2 montages. The rate of nerve movement was determined from these data and normalised to a weekly rate (µm/week), using customised software. Results Wide-field corneal nerve fibre length correlated significantly with the Neuropathy Disability Score (r = -0.58, p < 0.05), vibration perception (r = -0.66, p < 0.05) and peroneal conduction velocity (r = 0.67, p < 0.05). Central corneal nerve fibre length did not correlate with any of these measures of neuropathy (p > 0.05 for all). The rate of corneal nerve migration was 14.3 ± 1.1 µm/week in diabetic patients with neuropathy, 19.7 ± 13.3µm/week in diabetic patients without neuropathy, and 24.4 ± 9.8µm/week in control subjects; however, these differences were not significantly different (p = 0.543). Conclusions Our data demonstrate that it is possible to capture wide-field images of the corneal nerve plexus, and to quantify the rate of corneal nerve migration by repeating this procedure over a number of weeks. Further studies on larger sample sizes are required to determine the utility of this approach for the diagnosis and monitoring of diabetic neuropathy.
Resumo:
The migration of three human prostate tumor epithelial cell lines (TSU-pr1, PC-3, DU-145) in response to secreted protein from a human prostate stromal cell line was investigated by using the modified blind-well Boyden chamber assay. Migrated cells were quantified by spectrophotometrically measuring the concentration of crystal violet stain extracted from their nuclei. Cell number was correlated linearly with the concentration of extracted crystal violet stain. All three tumor cell lines showed intrinsic migratory ability in the absence of chemoattractants, such that approximately 1-7% of plated cells migrated across the filter of the Boyden chambers during a 5-h incubation period. Prostate tumor cell migration was significantly enhanced (3-13-fold) in response to stromal cell secretory protein in a dose-dependent manner, whereas bovine serum albumin had no effect on stimulating tumor cell migration. Immunoprecipitation of the stromal cell secreted protein with a nerve growth factor antibody partially and significantly reduced its stimulatory activity for tumor cell migration. A Zigmond-Hirsch matrix assay of tumor cell migration in response to various concentration gradients of stromal cell secreted protein demonstrated both chemotaxis and chemokinesis by all three cell lines. These results are consistent with the stromal cell secretory protein stimulation of chemokinetic tumor cell migration through the capsule of the prostate. Outside of the prostate gland metastasis of tumor cells may occur by chemotaxis to preferential sites containing chemoattractants similar to or related to maintenance factors that can substitute for components of stromal cell secretory protein.
Resumo:
Schwann cells (SCs) are the supporting cells of the peripheral nervous system and originate from the neural crest. They play a unique role in the regeneration of injured peripheral nerves and have themselves a highly unstable phenotype as demonstrated by their unexpectedly broad differentiation potential. Thus, SCs can be considered as dormant, multipotent neural crest-derived progenitors or stem cells. Upon injury they de-differentiate via cellular reprogramming, re-enter the cell cycle and participate in the regeneration of the nerve. Here we describe a protocol for efficient generation of neurospheres from intact adult rat and murine sciatic nerve without the need of experimental in vivo pre-degeneration of the nerve prior to Schwann cell isolation. After isolation and removal of the connective tissue, the nerves are initially plated on poly-D-lysine coated cell culture plates followed by migration of the cells up to 80% confluence and a subsequent switch to serum-free medium leading to formation of multipotent neurospheres. In this context, migration of SCs from the isolated nerve, followed by serum-free cultivation of isolated SCs as neurospheres mimics the injury and reprograms fully differentiated SCs into a multipotent, neural crest-derived stem cell phenotype. This protocol allows reproducible generation of multipotent Schwann cell-derived neurospheres from sciatic nerve through cellular reprogramming by culture, potentially marking a starting point for future detailed investigations of the de-differentiation process.
Resumo:
OBJETIVO: Avaliar a aplicabilidade do uso de músculo autógeno, tratado de diversas maneiras, em substituição aos enxertos de nervo. MÉTODOS: Os ratos foram separados em sete grupos que receberam, como tratamento a uma lesão nervosa padronizada, os seguintes tipos de enxertos: músculo fresco, músculo fixado com formol 10%, músculo congelado em freezer, músculo congelado em refrigerador, músculo denervado, nervo periférico e um grupo ficou sem qualquer tratamento. Foi avaliado o aspecto histológico das fibras nervosas no segmento reparado. RESULTADOS: A avaliação do segmento nervoso reparado mostrou que existiam axônios em quase todos os grupos, mas a metodologia empregada não possibilitou caracterizar adequadamente as diferenças entre os grupos. CONCLUSÃO: Este estudo mostrou a migração de axônios por meio de todos os enxertos utilizados.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aims The macrophage migration inhibitory factor (MIF) is an intracellular inhibitor of the central nervous system actions of angiotensin II on blood pressure. Considering that angiotensin II actions at the nucleus of the solitary tract are important for the maintenance of hypertension in spontaneously hypertensive rats (SHRs), we tested if increased MIF expression in the nucleus of the solitary tract of SHR alters the baseline high blood pressure in these rats.Methods and resultsEight-week-old SHRs or normotensive rats were microinjected with the vector AAV2-CBA-MIF into the nucleus of the solitary tract, resulting in MIF expression predominantly in neurons. Rats also underwent recordings of the mean arterial blood pressure (MAP) and heart rate (via telemetry devices implanted in the abdominal aorta), cardiac- and baroreflex function. Injections of AAV2-CBA-MIF into the nucleus of the solitary tract of SHRs produced significant decreases in the MAP, ranging from 10 to 20 mmHg, compared with age-matched SHRs that had received identical microinjections of the control vector AAV2-CBA-eGFP. This lowered MAP in SHRs was maintained through the end of the experiment at 31 days, and was associated with an improvement in baroreflex function to values observed in normotensive rats. In contrast to SHRs, similar increased MIF expression in the nucleus of the solitary tract of normotensive rats produced no changes in baseline MAP and baroreflex function.ConclusionThese results indicate that an increased expression of MIF within the nucleus of the solitary tract neurons of SHRs lowers blood pressure and restores baroreflex function. © 2012 Published on behalf of the European Society of Cardiology. All rights reserved.
Resumo:
Neurons and their precursor cells are formed in different regions within the developing CNS, but they migrate and occupy very specific sites in the mature CNS. The ultimate position of neurons is crucial for establishing proper synaptic connectivity in the brain. In Drosophila, despite its extensive use as a model system to study neurogenesis, we know almost nothing about neuronal migration or its regulation. In this paper, I show that one of the most studied neuronal pairs in the Drosophila nerve cord, RP2/sib, has a complicated migratory route. Based on my studies on Wingless (Wg) signaling, I report that the neuronal migratory pattern is determined at the precursor cell stage level. The results show that Wg activity in the precursor neuroectodermal and neuroblast levels specify neuronal migratory pattern two divisions later, thus, well ahead of the actual migratory event. Moreover, at least two downstream genes, Cut and Zfh1, are involved in this process but their role is at the downstream neuronal level. The functional importance of normal neuronal migration and the requirement of Wg signaling for the process are indicated by the finding that mislocated RP2 neurons in embryos mutant for Wg-signaling fail to properly send out their axon projection.
Resumo:
In this paper the hardware implementation of an inner hair cell model is presented. Main features of the design are the use of Meddis’ transduction structure and the methodology for Design with Reusability. Which allows future migration to new hardware and design refinements for speech processing and custom-made hearing aids
Resumo:
Nerve growth factor (NGF) is a polypeptide which, in addition to its effect on nerve cells, is believed to play a role in inflammatory responses and in tissue repair. Because fibroblasts represent the main target and effector cells in these processes, to investigate whether NGF is involved in lung and skin tissue repair, we studied the effect of NGF on fibroblast migration, proliferation, collagen metabolism, modulation into myofibroblasts, and contraction of collagen gel. Both skin and lung fibroblasts were found to produce NGF and to express tyrosine kinase receptor (trkA) under basal conditions, whereas the low-affinity p75 receptor was expressed only after prolonged NGF exposure. NGF significantly induced skin and lung fibroblast migration in an in vitro model of wounded fibroblast and skin migration in Boyden chambers. Nevertheless NGF did not influence either skin or lung fibroblast proliferation, collagen production, or metalloproteinase production or activation. In contrast, culture of both lung and skin fibroblasts with NGF modulated their phenotype into myofibroblasts. Moreover, addition of NGF to both fibroblast types embedded in collagen gel increased their contraction. Fibrotic human lung or skin tissues displayed immunoreactivity for NGF, trkA, and p75. These data show a direct pro-fibrogenic effect of NGF on skin and lung fibroblasts and therefore indicate a role for NGF in tissue repair and fibrosis.
Resumo:
To test the hypothesis that the nonrandom organization of the contents of interphase nuclei represents a compartmentalization of function, we examined the relative, spatial relationship of small nuclear ribonucleoproteins (snRNPs) and of DNase I hypersensitive chromatin (DHC) in rat pheochromocytoma cells. In controls, DHC and snRNPs colocalized as pan-nuclear speckles. During nerve growth factor-induced differentiation, both snRNPs and DHC migrated to the nuclear periphery with the migration of DHC preceding that of snRNPs, resulting in their transient separation. The formation of DHC shells temporally coincided with an up-regulation of neurofilament light chain mRNA. This indicates that the expression of this sequence may be associated with its spatial transposition to the nuclear periphery.
Resumo:
Study Design. Coculture assays of the migration and interaction of human intervertebral disc cells and chick sensory nerves on alternate substrata of collagen and aggrecan. Objective. To examine the effects of aggrecan on disc cell migration, how disc cells and sensory nerves interact, and whether disc cells affect previously reported inhibitory effects of aggrecan on sensory nerve growth. Summary of Background Data. Human intervertebral disc aggrecan is inhibitory to sensory nerve growth in vitro, suggesting that a loss of aggrecan from the disc may have a role in the increased innervation seen in disc degeneration. Endothelial cells that appear to co-migrate with nerves into degenerated intervertebral disc express neurotrophic factors, but the effects of disc cells on nerve growth are not known. Methods. Human disc cells were seeded onto tissue culture plates that had been coated with type I collagen and human intervertebral disc aggrecan. Explants of chick dorsal root ganglions (DRGs) were subsequently added to the plates and sensory neurite outgrowth stimulated by the addition of nerve growth factor. Time-lapse video and fluorescence microscopy were used to examine the migration and interaction of the disc cells and sensory neurites, in the context of the different matrix substrata. The effects of disc cell conditioned medium on nerve growth were also examined. Results. Disc cells spread and migrated on collagen until they encountered the aggrecan substrata, where some cells, but not all, were repelled. In coculture, DRG neurites extended onto the collagen/disc cells until they encountered the aggrecan, where, like the disc cells, many were repelled. However, in the presence of disc cells, some neurites were able to cross onto this normally inhibitory substratum. The number of neurite crossings onto aggrecan correlated significantly with the number of disc cells present on the aggrecan. In control experiments using DRG alone, all extending neurites were repelled at the collagen/aggrecan border. Conditioned medium from disc cell cultures stimulated DRG neurite outgrowth on collagen but did not increase neurite crossing onto aggrecan substrata. Conclusions. Human disc cells migrate across aggrecan substrata that are repellent to sensory DRG neurites. Disc cells synthesize neurotrophic factors in vitro that promote neurite outgrowth. Furthermore, the presence of disc cells in coculture with DRG partially abrogates the inhibitory effects of aggrecan on nerve growth. These findings have important implications for the regulation of nerve growth into the intervertebral disc, but whether disc cells promote nerve growth in vivo remains to be determined.
Resumo:
STUDY DESIGN: The effect of human intervertebral disc aggrecan on endothelial cell growth was examined using cell culture assays. OBJECTIVE: To determine the response of endothelial cells to human intervertebral disc aggrecan, and whether the amount and type of aggrecan present in the intervertebral disc may be implicated in disc vascularization. SUMMARY OF BACKGROUND DATA: Intervertebral disc degeneration has been associated with a loss of proteoglycan, and the ingrowth of blood vessels and nerves. Neovascularization is a common feature also of disc herniation. Intervertebral disc aggrecan is inhibitory to sensory nerve growth, but the effects of disc aggrecan on endothelial cell growth are not known. METHODS: Aggrecan monomers were isolated separately from the anulus fibrosus and nucleus pulposus of human lumbar intervertebral discs, and characterized to determine the amount and type of sulfated glycosaminoglycan side chains present. The effects of these aggrecan isolates on the cellular adhesion and migration of the human endothelial cell lines, HMEC-1 and EAhy-926, were examined in vitro. RESULTS: Homogenous substrata of disc aggrecan inhibited endothelial cell adhesion and cell spreading in a concentration dependent manner. In substrata choice assays, endothelial cells seeded onto collagen type I migrated over the collagen until they encountered substrata of disc aggrecan, where they either stopped migrating, retreated onto the collagen, or, more commonly, changed direction to align along the collagen-aggrecan border. The inhibitory effect of aggrecan on endothelial cell migration was concentration dependent, and reduced by enzymatic treatment of the aggrecan monomers with a combination of chondroitinase ABC and keratinase/keratinase II. Anulus fibrosus aggrecan was more inhibitory to endothelial cell adhesion than nucleus pulposus aggrecan. However, this difference did not relate to the extent to which the different aggrecan isolates were charged, as determined by colorimetric assay with 1,9-dimethylmethylene blue, or to marked differences in the distribution of chondroitin sulfated and keratan sulfated side chains. CONCLUSIONS: Human intervertebral disc aggrecan is inhibitory to endothelial cell migration, and this inhibitory effect appears to depend, in part, on the presence of glycosaminoglycan side chains on the aggrecan monomer.
Resumo:
Purpose: To determine the subbasal nerve density and tortuosity at 5 corneal locations and to investigate whether these microstructural observations correlate with corneal sensitivity. Method: Sixty eyes of 60 normal human subjects were recruited into 1 of 3 age groups, group 1: aged ,35 years, group 2: aged 35–50 years, and group 3: aged .50 years. All eyes were examined using slit-lamp biomicroscopy, noncontact corneal esthesiometry, and slit scanning in vivo confocal microscopy. Results: The mean subbasal nerve density and the mean corneal sensitivity were greatest centrally (14,731 6 6056 mm/mm2 and 0.38 6 0.21 millibars, respectively) and lowest in the nasal mid periphery (7850 6 4947 mm/mm2 and 0.49 6 0.25 millibars, respectively). The mean subbasal nerve tortuosity coefficient was greatest in the temporal mid periphery (27.3 6 6.4) and lowest in the superior mid periphery (19.3 6 14.1). There was no significant difference in mean total subbasal nerve density between age groups. However, corneal sensation (P = 0.001) and subbasal nerve tortuosity (P = 0.004) demonstrated significant differences between age groups. Subbasal nerve density only showed significant correlations with corneal sensitivity threshold in the temporal cornea and with subbasal nerve tortuosity in the inferior and nasal cornea. However, these correlations were weak. Conclusions: This study quantitatively analyzes living human corneal nerve structure and an aspect of nerve function. There is no strong correlation between subbasal nerve density and corneal sensation. This study provides useful baseline data for the normal living human cornea at central and mid-peripheral locations