924 resultados para nerve biopsy
Resumo:
OBJECTIVE: The purpose of this article is to report our preliminary results regarding microsurgical repair of the sural nerve after nerve biopsy, in an attempt to reduce the well-described sensory morbidity and neuroma formation. METHODS: Three patients with a suspected diagnosis of peripheral neuropathy underwent sural nerve biopsies to establish definitive diagnoses. A 10-mm segment of the sural nerve was resected with local anesthesia. After harvesting of the specimen, the proximal and distal nerve stumps were carefully mobilized and united with epineural suture techniques, under a surgical microscope. Sensory evaluations (assessing the presence of hypesthesia/dysesthesia or pain) of the lateral aspect of the foot, in regions designated Areas 1, 2, and 3, were performed before and 6 and 12 months after the biopsies. A visual analog scale was used for pain estimation. RESULTS: The biopsy material was sufficient for histopathological examinations in all cases, leading to conclusive diagnoses (vasculitis in two cases and amyloidosis in one case). The early post-biopsy hypesthesia, which was present for 4 to 8 weeks, improved to preoperative levels as early as 6 months after the nerve repair. Sensory evaluations performed at 6- and 12-month follow-up times demonstrated that none of the patients complained of pain at the biopsy site or distally in the area innervated by the sural nerve. Ultrasonography performed at the 12-month follow-up examination revealed normal sural nerve morphological features, with no neuroma formation, comparable to findings for the contralateral site. CONCLUSION: Microsurgical repair of the sural nerve after biopsy can eliminate or reduce sensory disturbances such as paraesthesia, hypesthesia, and dysesthesia distal to the biopsy site, in the distribution of the sensory innervation of the sural nerve, and can prevent painful neuroma formation. To our knowledge, this article is the first in the literature to report on microsurgical repair of the sural nerve after nerve biopsy. Decreased side effects suggest that this technique can become a standard procedure after sural nerve biopsy, which is commonly required to establish the diagnosis of various diseases, such as peripheral nerve pathological conditions, vasculitis, and amyloidosis. More cases should be analyzed, however, to explore the usefulness of the technique and the reliability of sural nerve biopsy samples in attempts to obtain conclusive diagnoses.
Resumo:
Diabetic peripheral neuropathy (DPN) is one of the most common long-term complications of diabetes. The accurate detection and quantification of DPN are important for defining at-risk patients, anticipating deterioration, and assessing new therapies. Current methods of detecting and quantifying DPN, such as neurophysiology, lack sensitivity, require expert assessment and focus primarily on large nerve fibers. However, the earliest damage to nerve fibers in diabetic neuropathy is to the small nerve fibers. At present, small nerve fiber damage is currently assessed using skin/nerve biopsy; both are invasive technique and are not suitable for repeated investigations.
Resumo:
OBJECTIVE: The accurate quantification of human diabetic neuropathy is important to define at-risk patients, anticipate deterioration, and assess new therapies. ---------- RESEARCH DESIGN AND METHODS: A total of 101 diabetic patients and 17 age-matched control subjects underwent neurological evaluation, neurophysiology tests, quantitative sensory testing, and evaluation of corneal sensation and corneal nerve morphology using corneal confocal microscopy (CCM). ---------- RESULTS: Corneal sensation decreased significantly (P = 0.0001) with increasing neuropathic severity and correlated with the neuropathy disability score (NDS) (r = 0.441, P < 0.0001). Corneal nerve fiber density (NFD) (P < 0.0001), nerve fiber length (NFL), (P < 0.0001), and nerve branch density (NBD) (P < 0.0001) decreased significantly with increasing neuropathic severity and correlated with NDS (NFD r = −0.475, P < 0.0001; NBD r = −0.511, P < 0.0001; and NFL r = −0.581, P < 0.0001). NBD and NFL demonstrated a significant and progressive reduction with worsening heat pain thresholds (P = 0.01). Receiver operating characteristic curve analysis for the diagnosis of neuropathy (NDS >3) defined an NFD of <27.8/mm2 with a sensitivity of 0.82 (95% CI 0.68–0.92) and specificity of 0.52 (0.40–0.64) and for detecting patients at risk of foot ulceration (NDS >6) defined a NFD cutoff of <20.8/mm2 with a sensitivity of 0.71 (0.42–0.92) and specificity of 0.64 (0.54–0.74). ---------- CONCLUSIONS: CCM is a noninvasive clinical technique that may be used to detect early nerve damage and stratify diabetic patients with increasing neuropathic severity. Established diabetic neuropathy leads to pain and foot ulceration. Detecting neuropathy early may allow intervention with treatments to slow or reverse this condition (1). Recent studies suggested that small unmyelinated C-fibers are damaged early in diabetic neuropathy (2–4) but can only be detected using invasive procedures such as sural nerve biopsy (4,5) or skin-punch biopsy (6–8). Our studies have shown that corneal confocal microscopy (CCM) can identify early small nerve fiber damage and accurately quantify the severity of diabetic neuropathy (9–11). We have also shown that CCM relates to intraepidermal nerve fiber loss (12) and a reduction in corneal sensitivity (13) and detects early nerve fiber regeneration after pancreas transplantation (14). Recently we have also shown that CCM detects nerve fiber damage in patients with Fabry disease (15) and idiopathic small fiber neuropathy (16) when results of electrophysiology tests and quantitative sensory testing (QST) are normal. In this study we assessed corneal sensitivity and corneal nerve morphology using CCM in diabetic patients stratified for the severity of diabetic neuropathy using neurological evaluation, electrophysiology tests, and QST. This enabled us to compare CCM and corneal esthesiometry with established tests of diabetic neuropathy and define their sensitivity and specificity to detect diabetic patients with early neuropathy and those at risk of foot ulceration.
Resumo:
O diagnóstico da hanseníase neural pura baseia-se em dados clínicos e laboratoriais do paciente, incluindo a histopatologia de espécimes de biópsia de nervo e detecção de DNA de Mycobacterium leprae (M. leprae) pelo PCR. Como o exame histopatológico e a técnica PCR podem não ser suficientes para confirmar o diagnóstico, a imunomarcação de lipoarabinomanana (LAM) e/ou Glicolipídio fenólico 1 (PGL1) - componentes de parede celular de M. leprae foi utilizada na primeira etapa deste estudo, na tentativa de detectar qualquer presença vestigial do M. leprae em amostras de nervo sem bacilos. Além disso, sabe-se que a lesão do nervo na hanseníase pode diretamente ser induzida pelo M. leprae nos estágios iniciais da infecção, no entanto, os mecanismos imunomediados adicionam severidade ao comprometimento da função neural em períodos sintomáticos da doença. Este estudo investigou também a expressão imuno-histoquímica de marcadores envolvidos nos mecanismos de patogenicidade do dano ao nervo na hanseníase. Os imunomarcadores selecionados foram: quimiocinas CXCL10, CCL2, CD3, CD4, CD8, CD45RA, CD45RO, CD68, HLA-DR, e metaloproteinases 2 e 9. O estudo foi desenvolvido em espécimes de biópsias congeladas de nervo coletados de pacientes com HNP (n=23 / 6 BAAR+ e 17 BAAR - PCR +) e pacientes diagnosticados com outras neuropatias (n=5) utilizados como controle. Todas as amostras foram criosseccionadas e submetidas à imunoperoxidase. Os resultados iniciais demonstraram que as 6 amostras de nervos BAAR+ são LAM+/PGL1+. Já entre as 17 amostras de nervos BAAR-, 8 são LAM+ e/ou PGL1+. Nas 17 amostras de nervos BAAR-PCR+, apenas 7 tiveram resultados LAM+ e/ou PGL1+. A detecção de imunorreatividade para LAM e PGL1 nas amostras de nervo do grupo HNP contribuiu para a maior eficiência diagnóstica na ausência recursos a diagnósticos moleculares. Os resultados da segunda parte deste estudo mostraram que foram encontradas imunoreatividade para CXCL10, CCL2, MMP2 e MMP9 nos nervos da hanseníase, mas não em amostras de nervos com outras neuropatias. Além disso, essa imunomarcação foi encontrada predominantemente em células de Schwann e em macrófagos da população celular inflamatória nos nervos HNP. Os outros marcadores de ativação imunológica foram encontrados em leucócitos (linfócitos T e macrófagos) do infiltrado inflamatório encontrados nos nervos. A expressão de todos os marcadores, exceto CXCL10, apresentou associação com a fibrose, no entanto, apenas a CCL2, independentemente dos outros imunomarcadores, estava associada a esse excessivo depósito de matriz extracelular. Nenhuma diferença na frequência da imunomarcação foi detectada entre os subgrupos BAAR+ e BAAR-, exceção feita apenas às células CD68+ e HLA-DR+, que apresentaram discreta diferença entre os grupos BAAR + e BAAR- com granuloma epitelioide. A expressão de MMP9 associada com fibrose é consistente com os resultados anteriores do grupo de pesquisa. Estes resultados indicam que as quimiocinas CCL2 e CXCL10 não são determinantes para o estabelecimento das lesões com ou sem bacilos nos em nervo em estágios avançados da doença, entretanto, a CCL2 está associada com o recrutamento de macrófagos e com o desenvolvimento da fibrose do nervo na lesão neural da hanseníase.
Resumo:
INTRODUCTION: Acute painful diabetic neuropathy (APDN) is a distinctive diabetic polyneuropathy and consists of two subtypes: treatment-induced neuropathy (TIN) and diabetic neuropathic cachexia (DNC). The characteristics of APDN are (1.) the small-fibre involvement, (2.) occurrence paradoxically after short-term achievement of good glycaemia control, (3.) intense pain sensation and (4.) eventual recovery. In the face of current recommendations to achieve quickly glycaemic targets, it appears necessary to recognise and understand this neuropathy. METHODS AND RESULTS: Over 2009 to 2012, we reported four cases of APDN. Four patients (three males and one female) were identified and had a mean age at onset of TIN of 47.7 years (±6.99 years). Mean baseline HbA1c was 14.2% (±1.42) and 7.0% (±3.60) after treatment. Mean estimated time to correct HbA1c was 4.5 months (±3.82 months). Three patients presented with a mean time to symptom resolution of 12.7 months (±1.15 months). One patient had an initial normal electroneuromyogram (ENMG) despite the presence of neuropathic symptoms, and a second abnormal ENMG showing axonal and myelin neuropathy. One patient had a peroneal nerve biopsy showing loss of large myelinated fibres as well as unmyelinated fibres, and signs of microangiopathy. CONCLUSIONS: According to the current recommendations of promptly achieving glycaemic targets, it appears necessary to recognise and understand this neuropathy. Based on our observations and data from the literature we propose an algorithmic approach for differential diagnosis and therapeutic management of APDN patients.
Resumo:
Introducción La mutación genética Val30Met de la proteína transtiretina (TTR) es causante de la polineuropatía amiloidótica familiar, comprometiendo en fases iniciales las fibras nerviosas pequeñas (mielinizadas Aδ y amielínicas tipo C), involucradas en funciones autonómicas, nocicepción, percepción térmica y sudoración. Los métodos neurofisiológicos convencionales, no logran detectar dichas anormalidades, retardando el inicio de tratamientos específicos para la enfermedad. Metodología El objetivo principal fue evaluar el test de cuantificación sensitiva (QST) como método de detección temprana de anormalidades de fibra pequeña, en individuos Val30Met, seguidos en el Hospital Universitario Santa María, Lisboa. Se clasificaron los pacientes en 3 grupos, según sintomatología y examen neurológico. Se analizaron los umbrales para percepción de frío, dolor con el calor y vibración en los grupos, en correlación con controles sanos. Resultados 18 registros de controles sanos y 33 de individuos con la mutación, divididos en asintomáticos (24,2%), sintomáticos con examen neurológico normal (42,4%) y sintomáticos con examen neurológico anormal (33,3%). No se encontraron diferencias entre los pacientes asintomáticos y los controles. Los umbrales para frío (p=0,042) y en el dolor intermedio con el calor (HP 5) (p=0,007) se encuentran elevados en individuos Val30Met sintomáticos con examen normal. En los pacientes sintomáticos con alteraciones al examen, también se presentaron alteraciones en el intervalo entre el inicio y el dolor intermedio con el calor (HP 5-0,5) (p=0,009). Discusión Los umbrales de frío y de percepción de dolor con el calor, permiten detectar anormalidades en personas con la mutación TTR Val30Met, sintomáticos, incluyendo aquellos sin cambios objetivos al examen neurológico.
Resumo:
This article presents a case of relapse, with isolated neural manifestation, in a multibacillary patient previously treated with multidrug therapy for multibacillary leprosy (24 doses). The patient returned to the service six years after the end of treatment, with pain in hands and legs. He was investigated, and the serological monitoring showed an important increase in anti-phenolic glycolipid serum levels. A neural recurrence was suspected, since the patient had no new skin lesions. A new biopsy in the right ulnar nerve showed a bacilloscopy of 2 +, compatible with relapse. This is a literature review of the etiological, clinical, propedeutical and diagnostic aspects of this situation so poorly understood. © 2012 by Anais Brasileiros de Dermatologia.
Resumo:
The polyneuropathy of juvenile Greyhound show dogs shows clinical similarities to the genetically heterogeneous Charcot-Marie-Tooth (CMT) disease in humans. The pedigrees containing affected dogs suggest monogenic autosomal recessive inheritance and all affected dogs trace back to a single male. Here, we studied the neuropathology of this disease and identified a candidate causative mutation. Peripheral nerve biopsies from affected dogs were examined using semi-thin histology, nerve fibre teasing and electron microscopy. A severe chronic progressive mixed polyneuropathy was observed. Seven affected and 17 related control dogs were genotyped on the 50k canine SNP chip. This allowed us to localize the causative mutation to a 19.5 Mb interval on chromosome 13 by homozygosity mapping. The NDRG1 gene is located within this interval and NDRG1 mutations have been shown to cause hereditary motor and sensory neuropathy-Lom in humans (CMT4D). Therefore, we considered NDRG1 a positional and functional candidate gene and performed mutation analysis in affected and control Greyhounds. A 10 bp deletion in canine NDRG1 exon 15 (c.1080_1089delTCGCCTGGAC) was perfectly associated with the polyneuropathy phenotype of Greyhound show dogs. The deletion causes a frame shift (p.Arg361SerfsX60) which alters several amino acids before a stop codon is encountered. A reduced level of NDRG1 transcript could be detected by RT-PCR. Western blot analysis demonstrated an absence of NDRG1 protein in peripheral nerve biopsy of an affected Greyhound. We thus have identified a candidate causative mutation for polyneuropathy in Greyhounds and identified the first genetically characterized canine CMT model which offers an opportunity to gain further insights into the pathobiology and therapy of human NDRG1 associated CMT disease. Selection against this mutation can now be used to eliminate polyneuropathy from Greyhound show dogs.
Resumo:
Background and aims: The assessment of intra-epidermal nerve fiber density (IENFD) in skin biopsies and corneal nerve fiber density (CNFD) using corneal confocal microscopy (CCM) provides promising techniques to detect small nerve fiber damage in patients with peripheral neuropathy. To help define the clinical utility of each of these techniques in patients with diabetic neuropathy we have assessed sensitivity and specificity of IENFD and CNFD in predicting the following: 1) diabetic polyneuropathy (DPN); 2) risk of foot ulceration (RFU); 3) initial small fiber neuropathy (iSFN); 4) severe small fiber neuropathy (sSFN)...
Resumo:
We aimed to evaluate whether nerve fibers are present in the endometrial layer of patients submitted to office hysteroscopy and their potential contribution to the pathogenesis of pain during that procedure. Through a prospective case-control study performed in tertiary centers for women's health, endometrium samples were collected during operative office hysteroscopy from 198 cycling women who previously underwent laparoscopy and/or magnetic resonance imaging investigation for infertility assessment. Samples were classified according to the degree of the pain patients experienced and scored from values ranging from 0 (absence of discomfort/pain) to 10 (intolerable pain) on a 10-cm visual analog scale (VAS). The presence of nerve fiber markers (S100, NSE, SP, VIP, NPY, NKA, NKB, NKR1, NKR2, and NKR3) in the endometrium was also evaluated by morphologic and immunohistochemical analyses. We found that S-100, NSE, NKR1, NK-A, NK-B, VIP, and NPY, were immunolocalized in samples of endometrium, in significantly (P < .01, for all) higher levels in samples collected from patients with VAS score > 5 (group A) than ≤ 5 (group B) and significantly (P < .0001 for all) positively correlated with VAS levels. A statistically significant (P = .018) higher prevalence of endometriosis and/or adenomyosis was depicted in patients of group A than group B. Data from the present study led us to conclude that nerve fibers are expressed at the level of the functional layer of the endometrium and may contribute to pain generation during office hysteroscopy, mainly in women affected by endometriosis and adenomyosis.
Resumo:
Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterisation and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression and assess new therapies. This thesis evaluates novel corneal methods of assessing diabetic neuropathy. Over the past several years two new non-invasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy (CCM) allows quantification of corneal nerve parameters and non-contact corneal aesthesiometry (NCCA), the presumed functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and with automatic analysis paradigms developed, are suitable for clinical settings. Each has advantages and disadvantages over established techniques for assessing diabetic neuropathy. New information is presented regarding measurement bias of CCM images, and a unique sampling paradigm and associated accuracy determination method of combinations is described. A novel high-speed corneal nerve mapping procedure has been developed and application of this procedure in individuals with neuropathy has revealed regions of sub-basal nerve plexus that dictate further evaluation, as they appear to show earlier signs of damage than the central region of the cornea that has to date been examined. The discriminative capacity of corneal sensitivity measured by NCCA is revealed to have reasonable potential as a marker of diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.
Resumo:
Diabetic neuropathy is associated with increased morbidity and mortality. To date, limited data in subjects with impaired glucose tolerance and diabetes demonstrate nerve fiber repair after intervention. This may reflect a lack of efficacy of the interventions but may also reflect difficulty of the tests currently deployed to adequately assess nerve fiber repair, particularly in short-term studies. Corneal confocal microscopy (CCM) represents a novel noninvasive means to quantify nerve fiber damage and repair. Fifteen type 1 diabetic patients undergoing simultaneous pancreas-kidney transplantation (SPK) underwent detailed assessment of neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy, corneal sensitivity, and CCM at baseline and at 6 and 12 months after successful SPK. At baseline, diabetic patients had a significant neuropathy compared with control subjects. After successful SPK there was no significant change in neurologic impairment, neurophysiology, QST, corneal sensitivity, and intraepidermal nerve fiber density (IENFD). However, CCM demonstrated significant improvements in corneal nerve fiber density, branch density, and length at 12 months. Normalization of glycemia after SPK shows no significant improvement in neuropathy assessed by the neurologic deficits, QST, electrophysiology, and IENFD. However, CCM shows a significant improvement in nerve morphology, providing a novel noninvasive means to establish early nerve repair that is missed by currently advocated assessment techniques.
Resumo:
OBJECTIVE Quantitative assessment of small fiber damage is key to the early diagnosis and assessment of progression or regression of diabetic sensorimotor polyneuropathy (DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the potential to be a noninvasive and objective image biomarker for identifying small fiber damage. The purpose of this study was to determine the diagnostic performance of CCM and IENFD by using the current guidelines as the reference standard. RESEARCH DESIGN AND METHODS Eighty-nine subjects (26 control subjects and 63 patients with type 1 diabetes), with and without DSPN, underwent a detailed assessment of neuropathy, including CCM and skin biopsy. RESULTS Manual and automated corneal nerve fiber density (CNFD) (P < 0.0001), branch density (CNBD) (P < 0.0001) and length (CNFL) (P < 0.0001), and IENFD (P < 0.001) were significantly reduced in patients with diabetes with DSPN compared with control subjects. The area under the receiver operating characteristic curve for identifying DSPN was 0.82 for manual CNFD, 0.80 for automated CNFD, and 0.66 for IENFD, which did not differ significantly (P = 0.14). CONCLUSIONS This study shows comparable diagnostic efficiency between CCM and IENFD, providing further support for the clinical utility of CCM as a surrogate end point for DSPN.
Resumo:
Microneurovascular free muscle transfer with cross-over nerve grafts in facial reanimation Loss of facial symmetry and mimetic function as seen in facial paralysis has an enormous impact on the psychosocial conditions of the patients. Patients with severe long-term facial paralysis are often reanimated with a two-stage procedure combining cross-facial nerve grafting, and 6 to 8 months later with microneurovascular (MNV) muscle transfer. In this thesis, we recorded the long-term results of MNV surgery in facial paralysis and observed the possible contributing factors to final functional and aesthetic outcome after this procedure. Twenty-seven out of forty patients operated on were interviewed, and the functional outcome was graded. Magnetic resonance imaging (MRI) of MNV muscle flaps was done, and nerve graft samples (n=37) were obtained in second stage of the operation and muscle biopsies (n=18) were taken during secondary operations.. The structure of MNV muscles and nerve grafts was evaluated using histological and immunohistochemical methods ( Ki-67, anti-myosin fast, S-100, NF-200, CD-31, p75NGFR, VEGF, Flt-1, Flk-1). Statistical analysis was performed. In our studies, we found that almost two-thirds of the patients achieved good result in facial reanimation. The longer the follow-up time after muscle transfer the weaker was the muscle function. A majority of the patients (78%) defined their quality of life improved after surgery. In MRI study, the free MNV flaps were significantly smaller than originally. A correlation was found between good functional outcome and normal muscle structure in MRI. In muscle biopsies, the mean muscle fiber diameter was diminished to 40% compared to control values. Proliferative activity of satellite cells was seen in 60% of the samples and it tended to decline with an increase of follow-up time. All samples showed intramuscular innervation. Severe muscle atrophy correlated with prolonged intraoperative ischaemia. The good long-term functional outcome correlated with dominance of fast fibers in muscle grafts. In nerve grafts, the mean number of viable axons amounted to 38% of that in control samples. The grafted nerves characterized by fibrosis and regenerated axons were thinner than in control samples although they were well vascularized. A longer time between cross facial nerve grafting and biopsy sampling correlated with a higher number of viable axons. P75Nerve Growth Factor Receptor (p75NGFR) was expressed in every nerve graft sample. The expression of p75NGFR was lower in older than in younger patients. A high expression of p75NGFR was often seen with better function of the transplanted muscle. In grafted nerve Vascular Endothelial Growth Factor (VEGF) and its receptors were expressed in nervous tissue. In conclusion, most of the patients achieved good result in facial reanimation and were satisfied with the functional outcome. The mimic function was poorer in patients with longer follow-up time. MRI can be used to evaluate the structure of the microneurovascular muscle flaps. Regeneration of the muscle flaps was still going on many years after the transplantation and reinnervation was seen in all muscle samples. Grafted nerves were characterized by fibrosis and fewer, thinner axons compared to control nerves although they were well vascularized. P75NGFR and VEGF were expressed in human nerve grafts with higher intensity than in control nerves which is described for the first time.
Resumo:
Objective: To assess the efficacy and safety of periprostatic lignocaine injection in trans-rectal ultrasound (TRUS) -guided biopsy of the prostate gland.
Methods: Ninety- six men (mean age 65 years, range 47-74) undergoing TRUS biopsy were randomised into the local anaesthetic (LA) or placebo group. Six to twelve biopsy cores were taken, the majority being 10 cores. Patients were asked to fill in the expected pain score on a visual analogue scale (VAS) prior to the procedure. They also completed the actual pain experienced on VAS after the biopsy. The incidence of complications was documented.
Results: The age, mean prostate specific antigen (PSA) were comparable in both groups. The expected pain score was also comparable (5.2 +/- 1.6 in LA, 5.0 +/- 1.4 in Placebo). In the LA group, the mean actual pain score was 3.0 +/- 1.8 and in the placebo group it was 6.5 +/- 2.2 (P = 0.0001). When patients were asked whether they would undergo the procedure again in the same way, 100% of the LA group and only 64% of the placebo group responded 'yes'(P=0.002 using Fisher's test). The complication rates were not significantly different between the two groups.
Conclusion: Peri-prostatic injection of local anaesthetic is safe and reduces discomfort significantly, and should be routinely offered to patients.