999 resultados para natural glasses
Resumo:
Although many glass-bearing horizons can be found in South American volcanic complexes or sedimentary series, only a relatively few tephra and obsidian-bearing volcanic fields have been studied using the fission-track (FT) dating method. Among them, the volcanics located in the Sierra de Guamani (east of Quito, Ecuador) were studied by several authors. Based upon their ages, obsidians group into three clusters: (1) very young obsidians, similar to 0.2Ma old, (2) intermediate-age obsidians, similar to 0.4- similar to 0.8 Ma old, and (3) older obsidians, similar to 1.4- similar to 1.6 Ma old. The FT method is also an efficient alternative technique for identification of the sources of prehistoric obsidian artefacts. Provenance studies carried out in South America have shown that the Sierra de Guamani obsidian occurrences were important sources of raw material for toot making during pre-Columbian times. Glasses originated from these sources were identified in sites distributed over relatively wide areas of Ecuador and Colombia.Only a few systematic studies on obsidians in other sectors were carried out. Nevertheless, very singular glasses have been recognised in South America, such as Macusanite (Peru) and obsidian Quiron (Argentina), which are being proposed as additional reference materials for FT dating. Analyses of tephra beds interstratified with sedimentary deposits revealed the performance of FT dating in tephrochronological studies. A remarkable example is the famous deposit outcropping at Farola Monte Hermoso, near Bahia Blanca (Buenos Aires Province), described for the first time by the middle of the 19th century by Charles Darwin.Considering the large number of volcanic glasses that were recognised in volcanic complexes and in sedimentary series, South America is a very promising region for the application of FT dating. The examples given above show that this technique may yield important results in different disciplinary fields. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
New analyses have been performed in order to enhance the data-set on the independent ages of four glasses that have been proposed as reference materials for fission-track dating. The results are as follows. Moldavite - repeated (40)Ar/(39)Ar age determinations on samples from deposits from Bohemia and Moravia yielded an average of 14.34 +/- 0.08 Ma. This datum agrees with other recent determinations and is significantly younger than the (40)Ar/(39)Ar age of 15.21 +/- 0.15 Ma determined in the early 1980s. Macusanite (Peru) -four K-Ar ages ranging from 5.44 +/- 0.06 to 5.72 +/- 0.12 Ma have been published previously. New (40)Ar/(39)Ar ages gave an average of 5.12 +/- 0.04 Ma. Plateau fission-track ages determined using the IRMM-540 certified glass and U and Th thin films for neutron fluence measurements agree better with these new (40)Ar/(39)Ar ages than the previously published ages. Roccastrada glass (Italy) - a new (40)Ar/(39)Ar age, 2.45 +/- 0.04 Ma, is consistent with previous determinations. The Quiron obsidian (Argentina) is a recently discovered glass that has been proposed as an additional reference material for its high spontaneous track density (around 100 000 cm(-2)). Defects that might produce spurious tracks are virtually absent. An independent (40)Ar/(39)Ar age of 8.77 +/- 0.09 Ma was determined and is recommended for this glass. We believe that these materials, which will be distributed upon request to fission-track groups, will be very useful for testing system calibrations and experimental procedures.
Resumo:
Tephrochronology, a key tool in the correlation of Quaternary sequences, relies on the extraction of tephra shards from sediments for visual identification and high-precision geochemical comparison. A prerequisite for the reliable correlation of tephra layers is that the geochemical composition of glass shards remains unaltered by natural processes (e.g. chemical exchange in the sedimentary environment) and/or by laboratory analytical procedures. However, natural glasses, particularly when in the form of small shards with a high surface to volume ratio, are prone to chemical alteration in both acidic and basic environments. Current techniques for the extraction of distal tephra from sediments involve the ‘cleaning’ of samples in precisely such environments and at elevated temperatures. The acid phase of the ‘cleaning’ process risks alteration of the geochemical signature of the shards, while the basic phase leads to considerable sample loss through dissolution of the silica network. Here, we illustrate the degree of alteration and loss to which distal tephras may be prone, and introduce a less destructive procedure for their extraction. This method is based on stepped heavy liquid flotation and which results in samples of sufficient quality for analysis while preserving their geochemical integrity. In trials, this method out-performed chemical extraction procedures in terms of the number of shards recovered and has resulted in the detection of new tephra layers with low shard concentrations. The implications of this study are highly significant because (i) the current database of distal tephra records and their corresponding geochemical signatures may require refinement and (ii) the record of distal tephras may be incomplete due to sample loss induced by corrosive laboratory procedures. It is therefore vital that less corrosive laboratory procedures are developed to make the detection and classification of distal glass tephra more secure.
Resumo:
The compositions of natural glasses and phenocrysts in basalts from Deep Sea Drilling Project Sites 501, 504, and 505, near the Costa Rica Rift, constitute evidence for the existence of a periodically replenished axial magma chamber that repeatedly erupted lavas of remarkably uniform composition. Magma compositions were affected by three general components: (1) injected magmas carrying (in decreasing order of abundance) Plagioclase, olivine, and chrome-spinel phenocrysts (spinel assemblage); (2) injected magmas carrying Plagioclase, clinopyroxene, and olivine phenocrysts, but no spinel (clinopyroxene assemblage); and (3) moderately evolved hybrids in the magma chamber itself. The compositions of the injected phenocrysts and minerals in glomerocrysts are as follows: Plagioclase - An85-94; olivine - Fo87-89; clinopyroxene - high Cr2O3 (0.7-1.1%), endiopside (Wo42En51Fs7), and aluminous chromian spinel (Cr/Cr + Al = 0.3). These minerals resemble those thought to occur in upper mantle sources (9 kbars and less) of ocean-ridge basalts and to crystallize in magmas near those sources. In the magma chamber, more sodic Plagioclase (An79-85), less magnesian olivine (Fo81-86) and low-Cr2O3 (0.1-0.4%) clinopyroxene formed rims on these crystals, grew as other phenocrysts, and formed cumulus segregations on the walls and floors of the magma chamber. In the spinel-assemblage magmas, magnesiochromite (Cr/Cr + Al = 0.4-0.5) also formed. Some cumulus segregations were later entrained in lavas as xenoliths. The glass compositions define 16 internally homogeneous eruptive units, 13 of which are in stratigraphic order in a single hole, Hole 504B, which was drilled 561.5 meters into the ocean crust. These units are defined as differing from each other by more than analytical uncertainty in one or more oxides. However, many of the glass groups in Hole 504B show virtually no differences in TiO2 contents, Mg/Mg + Fe2+, or normative An/An + Ab, all of which are sensitive indicators of crystallization differentiation. The differences are so small that they are only apparent in the glass compositions; they are almost completely obscured in whole-rock samples by the presence of phenocrysts and the effects of alteration. Moreover, several of the glass units at different depths in Hole 504B are compositionally identical, with all oxides falling within the range of analytical uncertainty, with only small variations in the rest of the suite. The repetition of identical chemical types requires (1) very regular injection of magmas into the magma chamber, (2) extreme similarity of injected magmas, and (3) displacement of very nearly the same proportion of the magmas in the chamber at each injection. Numerical modeling and thermal considerations have led some workers to propose the existence of such conditions at certain types of spreading centers, but the lava and glass compositions at Hole 504B represent the first direct evidence revealed by drilling of the existence of a compositionally nearly steady-state magma chamber, and this chapter examines the processes acting in it in some detail. The glass groups that are most similar are from clinopyroxene-assemblage lavas, which have a range of Mg/Mg + Fe2"1" of 0.59 to 0.65. Spinel-assemblage basalts are less evolved, with Mg/Mg + Fe2+ of 0.65 to 0.69, but both types have nearly identical normative An/An + Ab (0.65-0.66). However, the two lava types contain megacrysts (olivine, Plagioclase, clinopyroxene) that crystallized from melts with Mg/Mg + Fe2+ values of 0.70 to 0.72. Projection of glass compositions into ternary normative systems suggests that spinel-assemblage magmas originated deeper in the mantle than clinopyroxene-assemblage magmas, and mineral data indicate that the two types followed different fractionation paths before reaching the magma chamber. The two magma types therefore represent neither a low- nor a high-pressure fractionation sequence. Some of the spinel-assemblage magmas may have had picritic parents, but were coprecipitating all of the spinel-assemblage phenocrysts before reaching the magma chamber. Clinopyroxene-assemblage magmas did not have picritic parents, but the compositions of phenocrysts suggest that they originated at about 9 kbars, near the transition between plagioclase peridotite and spinel peridotite in the mantle. Two glass groups have higher contents of alkalis, TiO2, and P2O5 than the others, evidently as a result of the compositions of mantle sources. Eruption of these lavas implies that conduits and chambers containing magmas from dissimilar sources were not completely interconnected on the Costa Rica Rift. The data are used to draw comparisons with the East Pacific Rise and to consider the mechanisms that may have prevented the eruption of ferrobasalts at these sites.
Resumo:
In this work, we present an approach for neutron fluence measurements based on natural thorium thin films and natural uranium-doped glasses calibrated through natural uranium thin films to be used for dating with the Fission-Track Method (FTM). This neutron dosimetry approach allows the employment of FTM even when dating is carried out using low neutron themalization facilities. Besides, it makes possible the determination of the Th/U ratio of the mineral to be dated. Durango apatite which is often employed in FTM as an age standard was analyzed. This apatite presented a fairly high Th/U ratio, 29.9 +/- 1.7. Th fissions were 18%, 12% and 10% of the total for irradiations where thermal to fast neutron flux ratios were 2.4, 4.4 and 5,2, respectively. These results show that Th fission must be considered for this apatite, when not well-thermalized irradiation facilities are used. The ratio between spontaneous and induced track length, L(S)/L(1), close to 0.89, indicates a certain amount of rejuvenation of the age of Durango apatite. Therefore, its apparent age should be corrected, the application of a technique based on track-length measurements produced a corrected age of 29.7 +/- 1.1 Ma, consistent with the independent reference age of this apatite (31.4 +/- 0.5 Ma). This result represents a support for viability of the neutron dosimetry approach studied in this work for FTM.(C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
An approach to the constraint counting theory of glasses is applied to many glass systems which include an oxide, chalcohalide, and chalcogenides. In this, shifting of the percolation threshold due to noncovalent bonding interactions in a basically covalent network and other recent extensions of the theory appear natural. This is particularly insightful and reveals that the chemical threshold signifies another structural transition along with the rigidity percolation threshold, thus unifying these two seemingly disparate toplogical concepts. [S0163-1829(99)11441-3].
Resumo:
The near-IR emission spectra of Er3+-Tm3+ codoped 70GeS(2)-20In(2)S(3)-10CsI chalcohalide glasses were studied with an 808 nm laser as an excitation source. A broad emission extending from 1.35 to 1.7 mu m with a FWHM of similar to 160 nm was recorded in a 0.1 mol.% Er2S3, 0.5 mol.% Tm2S3 codoped chalcohalide glass. The fluorescence decay curves of glasses were measured by monitoring the emissions of Tm3+ at 1460 nm and Er3+ at 1540 nm, and the lifetimes were obtained from the first-order exponential fit. The luminescence mechanism and the possible energy-transfer processes are discussed with respect to the energy-level diagram of Er3+ and Tm3+ ions. (C) 2008 Optical Society of America
Resumo:
We report on cooperative downconversion in Yb3+-RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses (LBG), which are capable of splitting a visible photon absorbed by Tm3+ or Pr3+ ions into two near-infrared photons. The results indicate that Pr3+-Yb3+ is a more efficient ion couple than Tm3+-Yb3+ in terms of cooperative downconversion. We have obtained a highest quantum yield of 165% and 138% for Pr3+-Yb3+ and Tm3+-Yb3+ codoped LBG glasses under 468 nm excitation, respectively. However, ultraviolet light excitation to the charge transfer band of Yb3+ does not result in quantum splitting as rapid relaxation from the charge transfer band to 4f(13) levels of Yb3+ dominates. (C) 2008 Optical Society of America
Resumo:
GeGaSKBr glass with Bi ions as emission centers were fabricated. An intense emission centered at around 1230 nm with the width of more than 175 nm was observed by 808 nm photo-excitation of the glass. Lower quenching rate and thermal treatment promote micro-crystallization process, thus strengthening the emission. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
Luminescences from bismuth-doped lime silicate glasses were investigated. Luminescences centered at about 400, 650, and 1300 nm were observed, excited at 280, 532 and 808 nm, respectively. These three luminescence bands arise from three different kinds of bismuth ions in the glasses. The visible luminescences centered at 400 and 650 nm arise from Bi3+, and Bi2+, respectively. The infrared luminescences cover the wavelength range from 1000 to 1600 nm when exited by an 808 nm laser diode. The full width at half maximum (FWHM) of the infrared luminescences is more than 205 urn. The intensity of the infrared luminescence decreases with the increment in CaO content. We suggest that the infrared luminescences might arise from Bi+. Such broadband luminescences indicate that the glasses may be potential candidate material for broadband fiber amplifiers and tunable lasers. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effect of Al(PO3)(3) content on physical, chemical and optical properties of fluorophosphate glasses for 2 mu m application, such as thermal stability, chemical durability, surface hardness, absorption spectra and emission spectra, is investigated. With the increment of Al(PO3)(3) content, the thermal stability characterized by the gap of T-g and T,, increases first and then decreases, and reaches the maximum level containing 5 mol% Al(PO3)(3) content. The density and chemical durability decrease monotonously with the introduction of Al(PO3)(3) content increasing, while the refractive index and surface hardness increase. Above properties of fluorophosphate glasses are also compared with fluoride glasses and phosphate glasses. The Judd-Ofelt parameters, absorption and emission cross sections are discussed based on the absorption spectra of Tm-doped glasses. The emission spectra are also measured and the 1.8 mu m fluorescence of the sample is obvious indicating that it is suitable to 2 mu m application. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Without introducing concentration quenching phenomenon, a few wt% of Tb3+ and Yb3+ ions were doped into a group of easily-fiberized tellurite glasses characterized by loose polyhedron structures and rich interstitial positions. Intense green upconversion emission from Tb3+ ions centered at 539 nm due to transition 5D4→7F5 was observed by direct excitation of Yb3+ ions with a laser diode at 976 nm. Optimizing the concentration ratio of Tb3+/Yb3+, a tellurite glass with composition of 80TeO2-10ZnO-10Na2O (mol%)+1.0wt% Tb2O3+3.0wt% Yb2O3 was found to present the highest green light intensity and therefore is especially suitable for efficient green fiber laser development.
Resumo:
Jadeite was synthesized from its glass of stoichiometric composition NaAlSi2O6, and a colouring agent Cr2O3 (0.3-0.6 wt%) was added to achieve the emerald colour. The conditions employed were a pressure range of 3.0-5.0 GPa and a temperature range of 1150