236 resultados para naphthalene endoperoxides


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular oxygen, in the first excited state (singlet oxygen, ¹O2), has a substantial reactivity towards electron-rich organic molecules, such as biological targets, including unsaturated fatty acids, proteins, RNA and DNA. Considering the complexity of biological systems and the great variety of reactive species generated by photochemistry, efforts have been devoted to develop suitable ¹O2 generators based on the thermolysis of water soluble naphthalene endoperoxides. These compounds are chemically inert and have been employed as versatile sources of ¹O2. The synthesis is based on structural modifications in position 1,4 of dimethylnaphtalene, grafting hydrophilic substituents. The correspondent endoperoxide can be generated using photochemical method, or molybdate-catalyzed disproportionation of hydrogen peroxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial bentonite (BFN) and organoclay (WS35), as well as iron oxide/clay composite (Mag_BFN) and iron/oxide organoclay composite (Mag_S35) were prepared for toluene and naphthalene sorption. Mag_BFN and Mag_S35 were obtained, respectively, by the precipitation of iron oxide hydrates onto sodium BFN and S35 clay particles. The materials were characterized by powder X-ray diffraction (XRD), X-ray Fluorescence (XRF), and TG and DTA. From XRF results and TG data on calcined mass basis, a quantitative method was developed to estimate the iron compound contents of the composites, as well as the organic matter content present in WS35 and Mag_S35.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous MCM-41 silica immobilized aluminium chloride shows high catalytic activity and selectivity in the Friedel-Crafts alkylation of naphthalene with isopropanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six polyesters were synthesised from 4,4 ' -oxy-bis(benzoyl chloride) and 1,4-, 1,5-, 1,6-, 2,3-, 2,6-, and 2,7-naphthalenediol isomers. The structures of the polyesters were characterised by means of IR, inherent viscosities in tetrachloroethane (TCE), solutions at 303 K and thermal analysis. The glass transition temperatures were in the range of 425-494 K by DSC thermal analysis. All of the polyesters were irradiated in an AECL Gammacell 220 unit at a dose rate of approximately 6.7 kGy/h to doses in the range of 0-15 kGy at 77 and 300 K. ESR spectroscopy was used to examine the radicals formed during radiolysis and to measure their yields. The G-values for radical formation in the polyesters were found to be in the range 0.18-1.41 at 77 K and 0.19-0.78 at 300 K. At 77 K, up to 15% of the radicals formed on radiolysis were found to be photo-bleachable anion radicals. Annealing experiments were carried out in order to identify the neutral radicals, which were assigned to naphthyl- or phenyl- and phenoxyl-type radicals. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 micro M). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid biological method for the determination of the bioavailability of naphthalene was developed and its value as an alternative to extraction-based chemical approaches demonstrated. Genetically engineered whole-cell biosensors are used to determine bioavailable naphthalene and their responses compared with results from Tenax extraction and chemical analysis. Results show a 1:1 correlation between biosensor results and chemical analyses for naphthalene-contaminated model materials and sediments, but the biosensor assay is much faster. This work demonstrates that biosensor technology can perform as well as standard chemical methods, though with some advantages including the inherent biological relevance of the response, rapid response time, and potential for field deployment. A survey of results from this work and the literature shows that bioavailability under non-equilibrium conditions nonetheless correlates well with K(oc) or K(d). A rationale is provided wherein chemical resistance is speculated to be operative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of this study represent the first report of the effect of Naphthalene Acetic Acid (NAA) on the pre and post harvest quality of wax apple fruit. The wax apple trees were spray treated with 0, 5, 10 and 20 mg L-1 NAA under field conditions during 2008 to 2011. The experiments were carried out in Completely Randomized Design (CRD) with six replications. Leaf chlorophyll content, chlorophyll fluorescence, photosynthetic yield, net photosynthetic rate, drymatter content of leaves and total soluble solids and K+content of wax apple fruits were significantly increased after treatments with 10 mg L-1. Polygalacturonase activity significantly decreased with NAA treatments. The application of 5 mg L-1 NAA increased 27% more bud and reduced 42% less fruit drop compared to the control. In addition, higher protein and phosphate synthase activity of leaves, fruit set, fruit growth, larger fruit size and yield were recorded in NAA treated plants. In storage, treated fruits exhibited higher TSS and firmness and less weight loss, browning, titratable acidity, respiration and ethylene production than the control. It is concluded that spraying with 5 and 10 mg L-1 NAA once a week under field conditions produced better fruit growth and yield of the wax apple and maintained better fruit quality in postharvest storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate oxidative lesions and strand breaks induction by singlet molecular oxygen (¹O2), supercoiled-DNA plasmid was treated with thermo-dissociated DHPNO2 and photoactivated-methylene blue. DNA lesions were detected by Fpg that cleaves DNA at certain oxidized bases, and T4-endoV, which cleaves DNA at cyclobutane pyrimidine dimers and apurinic/apyrimidinic (AP) sites. These cleavages form open relaxed-DNA structures, which are discriminated from supercoiled-DNA. DHPNO2 or photoactivated-MB treatments result in similar plasmid damage profile: low number of single-strand breaks or AP-sites and high frequency of Fpg-sensitive sites; confirming that base oxidation is the main product for both reactions and that ¹O2 might be the most likely intermediate that reacts with DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive preconcentration procedure for spectrophotometeric determination of aluminum was developed. Aluminum as aluminon complex is adsorbed on microcrystalline naphthalene. The naphthalene containing the complex is dissolved in 3 mL of acetone and its absorbance is measured at 544 nm. The effect of various factors on the preconcentration of aluminum was investigated. The calibration graph was linear in the range of 1-60 mg L-1. The limit of detection was 0.52 mg L-1 and relative standard deviation for the determination of 5 mg L-1 was 2.65%. The proposed solid phase extraction procedure was applied to determination of aluminum in food samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrate is quantitatively retained with 2,6-bis(4-methoxyphenyl)-4-phenyl pyrylium perchlorate (PPP) on microcrystalline naphthalene in the pH range of 6.5-9.0 from a large volume of aqueous solutions of various samples. The method was based on the complexation between PPP and nitrate and then, extraction of the resulted complex from aqueous solution by microcrystalline naphthalene. The solid mass consisting of the nitrate complex and naphthalene was then dissolved in dimethyl formamide (DMF) and absorption of the resulted solution was obtained at 328 nm. The linear calibration range for the determination of nitrate was 15-135 μg L-1 with the detection limit of 10 μg L-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycondensation of 2,6-dihydroxynaphthalene with 4,4'-bis(4"-fluorobenzoyl)biphenyl affords a novel, semicrystalline poly(ether ketone) with a melting point of 406 degreesC and glass transition temperature (onset) of 168 degreesC. Molecular modeling and diffraction-simulation studies of this polymer, coupled with data from the single-crystal structure of an oligomer model, have enabled the crystal and molecular structure of the polymer to be determined from X-ray powder data. This structure-the first for any naphthalene-containing poly(ether ketone)-is fully ordered, in monoclinic space group P2(1)/b, with two chains per unit cell. Rietveld refinement against the experimental powder data gave a final agreement factor (R-wp) of 6.7%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown- 6){Cp*Fe(η4-C10H8)}] (K1), [K(18-crown-6){Cp*Fe(η4-C14H10)}] (K2), [Cp*Fe(η4-C10H8)] (1), and [Cp*Fe(η4-C14H10)] (2) were synthesized and characterized by NMR, UV−vis, and 57Fe Mössbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η4-C10H8)]− (1−) and [Cp*Fe(η4-C14H10)]− (2−) and reversibly oxidized to the cations [Cp*Fe(η6-C10H8)]+ (1+) and [Cp*Fe(η6-C14H10)]+ (2+). Reduced orbital charges and spin densities of the naphthalene complexes 1−/0/+ and the anthracene derivatives 2−/0/+ were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1− and 2− are best represented by low-spin FeII ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin FeI ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin FeII ion coordinated to a ligand radical L•−. Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although there has been much interest in the chemistry of bimetallic transition metal complexes, compounds with naphthalene or anthracene as bridging ligands are still rare. In this article, we describe the synthesis of the homodinuclear iron complexes [Cp*Fe(μ-η4:η4-L)FeCp*] (1: L = C10H8, 2: L = C14H10; Cp* = η5-C5Me5). The complexes were characterized by 1H and 13C{1H} NMR, UV/Vis, and 57Fe Mössbauer spectroscopy, and their molecular structures were determined by X-ray crystallography. Both complexes are diamagnetic as a result of the strong magnetic coupling of the 17e FeI centers mediated by the polyarene bridge. An analysisof the redox behavior of 1 and 2 by cyclic voltammetry andUV/Vis spectroelectrochemistry shows that the complexes can be oxidized reversibly in two well-separated one-electron steps to the monocation [Cp*Fe(μ-L)FeCp*]+ and the dication [Cp*Fe(μ-L)FeCp*]2+. The reduction to the monoanion [Cp*Fe(μ-L)FeCp*]– was also observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissymmetrical naphthalene-bridged complexes [Cp′Fe(μ-C10H8)FeCp*] (3; Cp* = η5-C5Me5, Cp′ = η5-C5H2-1,2,4-tBu3) and [Cp′Fe(μ-C10H8)RuCp*] (4) were synthesized via a one-pot procedure from FeCl2(thf)1.5, Cp′K, KC10H8, and [Cp* FeCl(tmeda)] (tmeda = N,N,N′,N′- tetramethylethylenediamine) or [Cp*RuCl]4, respectively. The symmetrically substituted iron ruthenium complex [Cp*Fe(μ-C10H8)RuCp*] (5) bearing two Cp* ligands was prepared as a reference compound. Compounds 3−5 are diamagnetic and display similar molecular structures, where the metal atoms are coordinated to opposite sides of the bridging naphthalene molecule. Cyclic voltammetry and UV/vis spectroelectrochemistry studies revealed that neutral 3−5 can be oxidized to monocations 3+−5+ and dications 32+−52+. The chemical oxidation of 3 and 4 with [Cp2Fe]PF6 afforded the paramagnetic hexafluorophosphate salts [Cp′Fe(μ-C10H8)FeCp*]PF6 ([3]PF6) and [Cp′Fe(μ-C10H8)RuCp*]PF6 ([4]PF6), which were characterized by various spectroscopic techniques, including EPR and 57Fe Mössbauer spectroscopy. The molecular structure of [4]PF6 was determined by X-ray crystallography. DFT calculations support the structural and spectroscopic data and determine the compositions of frontier molecular orbitals in the investigated complexes. The effects of substituting Cp* with Cp′ and Fe with Ru on the electronic structures and the structural and spectroscopic properties are analyzed.