975 resultados para n(g) nitroarginine methyl ester


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-term administration of nitric oxide synthesis inhibitors induces arterial hypertension accompanied by left ventricular hypertrophy and myocardial ischemic lesions. Because the enhancement of sympathetic drive has been implicated in these phenomena, the current study was performed to determine the potency of β-adrenoceptor agonists and muscarinic agonists on the spontaneous rate of isolated right atria from rats given long-term treatment with the nitric oxide inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME). Atrial lesions induced by long-term treatment with L-NAME were also evaluated. Long-term L-NAME treatment caused a time-dependent, significant (P<0.05) increase in tail-cuff pressure compared with control animals. Our results showed that the potency of isoproterenol, norepinephrine, carbachol, and pilocarpine in isolated right atria from rats given long-term treatment with L-NAME for 7, 15, 30, and 60 days was not affected as compared with control animals. Addition of L-NAME in vitro (100 μmol/L) affected neither basal rate nor chronotropic response for isoproterenol and norepinephrine in rat heart. Stereological analysis of the right atria at 15 and 30 days revealed a significant increase on amount of fibrous tissues in L-NAME- treated groups (27±2.3% and 28±1.3% for 15 and 30 days, respectively; P<0.05) as compared with the control group (22±1.1%). Our results indicate that nitric oxide does not to interfere with β-adrenoceptor-mediated and muscarinic receptor-mediated chronotropic responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuromodulatory effect of nitric oxide (NO) on glutamatergic transmission within the NTS related to cardiovascular regulation has been widely investigated. Activation of glutamatergic receptors in the NTS stimulates the production and release of NO and other nitrosyl substances with neurotransmitter/neuromodulator properties. The presence of NOS, including the protein nNOS and its mRNA in vagal afferent terminals in the NTS and nodose ganglion cells suggest that NO can act on glutamatergic transmission. We previously reported that iontophoresis of L-NAME on NTS neurons receiving vagal afferent inputs significantly decreased the number of action potentials evoked by iontophoretic application of AMPA. In addition, iontophoresis of the NO donor papaNONOate enhanced spontaneous discharge and the number of action potentials elicited by AMPA, suggesting that NO could be facilitating AMPA-mediated neuronal transmission within the NTS. Furthermore, the changes in renal sympathetic discharge during activation of baroreceptors and cardiopulmonary receptors involve activation of AMPA and NMDA receptors in the NTS and these responses are attenuated by microinjection of L-NAME in the NTS of conscious and anesthetized rats. Cardiovascular responses elicited by application of NO in the NTS are closely similar to those obtained after activation of vagal afferent inputs, and L-glutamate is the main neurotransmitter of vagal afferent fibers. In this review we discuss the possible neuromodulatory mechanisms of central produced/released NO on glutamatergic transmission within the NTS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microinjection of S-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 ± 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 ± 7% and 17 ± 9% (5 and 15 min after pretreatment, P < 0.05 compared with before pretreatment). Pretreatment with L-NAME reduced AMPA-induced bradycardia from 122 ± 40 to 92 ± 32 beats/min but did not alter the hypertension induced by AMPA (35 ± 5 mmHg before pretreatment, 43 ± 6 mmHg after pretreatment). Control injections with D-NAME did not affect resting values or the response to AMPA. The present study shows that stimulation of AMPA receptors in the NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS. Copyright © 2006 the American Physiological Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the central role of angiotensin II and nitric oxide on arterial blood pressure (MAP) in rats. Losartan and PD123349 AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), as well as FK 409 (a nitric oxide donor), N W-nitro-L-arginine methyl ester (L-NAME) a constituve nitric oxide synthase inhibitor endothelial (eNOSI) and 7-nitroindazol (7NI) a specific neuronal nitric oxide synthase inhibitor (nNOSI) were used. Holtzman strain, (Rattus norvergicus) weighting 200-250 g were anesthetized with zoletil 50 mg kg -1 (tiletamine chloridrate 125 mg and zolazepan chloridrate 125 mg) into quadriceps muscle anda stainless steel cannula was stereotaxically implanted into their Lateral Ventricle (LV). Controls were injected with a 0.5 μl volume of 0.15 M NaCl. Angiotensin II injected into LV increased MAP (19±3 vs. control 3±1 mm Hg), which is potentiated by prior injection of L-NAME in the same site 26±2 mm Hg. 7NI injected prior to ANG II into LV also potentiated the pressor effect of ANG II but with a higher intensity than L-NAME 32±3 mm Hg. FK 409 inhibited the pressor effect of ANG II (6±1 mm Hg). Losartan injected into LV before ANG II influences the pressor effect of ANG II (8±1 mm Hg). The PD 123319 decreased the pressor effects of ANG II (16±1 mm Hg). Losartan injected simultaneously with FK 409 blocked the pressor effect of ANG II (3±1 mm Hg). L-NAME produced an increase in the pressor effect of ANG II, may be due to local vasoconstriction and all at once by neuronal NOS inhibition but the main effect is of the 7-NIT an specific nNOS inhibitor. The AT 1 antagonist receptors improve basal nitric oxide (NO) production and release. These data suggest the involvement of constitutive and neuronal NOS in the control of arterial blood pressure induced by ANG II centrally, evolving AT 1 receptor-mediated vasoconstriction and AT 2 receptor-mediated vasodilatation. These results were confirmed by the experiment using FK 409. © 2006 Asian Network for Scientific Information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The median preoptic nucleus (MnPO) is one of most important site of the lamina terminalis implicated in the regulation of hydro electrolytic and cardiovascular balance. The purpose of this study was to determine the effect of L-Type calcium channel antagonist, nifedipine, on the increase of median arterial blood pressure (MAP) induce by angiotensin II (ANG II) injected into the MnPO. The influence of nitric oxide (NO) on nifedipine antipressor action has also been studied by utilizing N W-nitro-L-arginine methyl ester (L-NAME) (40 μg 0.2 μL -1) a NO synthase inhibitor (NOSI), 7-nitroindazole (7-NIT) (40 μg 0.2 μL -1), a specific neuronal NO synthase inhibitor (nNOSI) and sodium nitroprusside (SNP) (20 μg 0.2 μL -1) a NO donor agent. We have also investigated the central role of losartan and PD123349 (20 nmol 0.2 μL -1), AT 1 and AT 2, respectively (selective non peptide ANG II receptor antagonists), in the pressor effect of ANG II (25 pmol 0.2 μL -1) injected into the MnPO. Male Wistar rats weighting 200-250 g, with cannulae implanted into the MnPO were utilized. Losartan injected into the MnPO, prior to ANG II, blocked the pressor effect of ANGII. PD 123319 only decreased the pressor effect of ANG II. Rats pre-treated with either 50 μg 0.2 μL -1 or 100 μg 0.2 μL -1 of nifedipine, followed by 25 pmol 0.2 μL -1 of ANG II, decreased ANG II-pressor effect. L-NAME potentiated the pressor effect of ANG II. 7-NIT injected prior to ANG II into the MnPO also potentiated the pressor effect of ANGII but with less intensity than that of L-NAME. SNP injected prior to ANG II blocked the pressor effect of ANG II. The potentiation action of L-NAME and 7-NIT on ANG II-pressor effect was blocked by prior injection of nifedipine. The results described in this study provide evidence that calcium channels play important roles in central ANG II-induced pressor effect. The structures containing NO in the brain, such as MnPO, include both endothelial and neuronal cells, which might be responsible for the influence of nifedipine on the pressor effect of ANG II. These data have shown the functional relationship between L-Type calcium channel and a free radical gas NO in the MnPO, on the control of ANG II-induced pressor effect acting in AT 1 and AT 2 receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effects of angiotensin receptors antagonists, arginine vasopressin receptor antagonist, L-arginine and L-NAME, injected into supraoptic nucleus of the hypothalamus (SON) on sodium intake induced by the injection of angiotensin II (ANGII). Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. Sodium intake after injection of saline SAL+SAL 0.15 M NaCl was 0.10±00.1 mL 2 h -1; SAL+ANGII injected into SON increased sodium intake. Losartan injected prior to ANGII into SON decreased sodium intake induced by ANGII. PD123319 injected prior to ANGII produced no changes in sodium intake induced by ANGII. AVPA receptor V 1 antagonist injected prior to ANGII reduced sodium intake with a less intensity than losartan. L-arginine injected prior to ANGII decreases sodium intake at a same intensity than losartan. L-NAME injected prior to ANGII potentiated sodium intake induced by ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the natriorexigenic effect of ANGII. These results confirm the importance of SON in the control of sodium intake. Also suggest that both AT 1 and arginine vasopressin V 1 receptors interact with nitrergic pathways within the SON influencing the sodium metabolism by changing sodium appetite induced by ANGII. © 2007 Asian Network for Scientific Information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the effects of AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), arginine vasopressin V 1 receptor antagonist as well as L-arginine, a nitric oxide donor and N W-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, injected into supraoptic nucleus (SON) on water and sodium intake induced by the injection of angiotensin II (ANGII). Male Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. The water intake after injection of saline SAL+SAL 0.15 M NaCl was 0.40±0.1 mL 2 h -1; SAL+ANGII increase water intake. Losartan decreased the water intake induced by ANGII. PD123319 injected prior to produce no change in water intake induced by ANGII. AVPA prior to ANGII reduced the water intake with a less intensity than losartan. L-arginine prior to ANGII decreases the water intake at a same intensity than losartan. L-NAME prior to ANGII potentiated the dipsogenic effect of ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the dipsogenic effect of ANGII. These results confirm the importance of SON in the control of water intake and strongly suggest that AT 1, V 1 receptors interact with nitrergic pathways within the SON influencing the dipsogenic effect of ANGII.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methanolic (VPME) and chloroformic (VPCL) extracts, obtained from the aerial parts of Vernonia polyanthes, were investigated for its antiulcerogenic properties. Administration of VPME (250 mg/kg) and VPCL (50 mg/kg) significantly inhibited the gastric mucosa damage (64% and 90%, respectively) caused by absolute ethanol (p.o.). Otherwise, in NSAID-induced gastric damage, their gastroprotective effects have decreased. Since the VPCL extract resulted to be more effective than the VPME we focused our efforts over VPCL action mechanism of action. © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Airway eosinophilia is considered a central event in the pathogenesis of asthma. The toxic components of eosinophils are thought to be important in inducing bronchial mucosal injury and dysfunction. Previous studies have suggested an interaction between nitric oxide (NO) and chemokines in modulating eosinophil functions, but this is still conflicting. In the present study, we have carried out functional assays (adhesion and degranulation) and flow cytometry analysis of adhesion molecules (VLA-4 and Mac-1 expression) to evaluate the interactions between NO and CC-chemokines (eotaxin and RANTES) in human eosinophils. Methods: Eosinophils were purified using a percoll gradient followed byimmunomagnetic cell separator. Cell adhesion and degranulation were evaluated by measuring eosinophil peroxidase (EPO) activity, whereas expression of Mac-1 and VLA-4 was detected using flow cytometry. Results: At 4 h incubation, both eotaxin (100 ng/ml) and RANTES (1000 ng/ml) increased by 133% and 131% eosinophil adhesion, respectively. L-NAME alone (but not D-NAME) also increased the eosinophil adhesion, but the co-incubation of L-NAME with eotaxin or RANTES did not further affect the increased adhesion seen with chemokines alone. In addition, L-NAME alone (but not D-NAME) caused a significant cell degranulation, but it did not affect the CC-chemokine-induced cell degranulation. Incubation of eosinophils with eotaxin or RANTES, in absence or presence of L-NAME, did not affect the expression of VLA-4 and Mac-1 on eosinophil surface. Eotaxin and RANTES (100 ng/ml each) also failed to elevate the cyclic GMP levels above baseline in human eosinophils. Conclusion: Eotaxin and RANTES increase the eosinophil adhesion to fibronectin-coated plates and promote cell degranulation by NO-independent mechanisms. The failure of CC-chemokines to affect VLA-4 and Mac-1 expression suggests that changes in integrin function (avidity or affinity) are rather involved in the enhanced adhesion. © 2008 Lintomen et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study evaluated the effects of histamine 10 -2 M on longitudinal preparations of rat portal vein. It was observed that histamine 10 -2 M induced relaxation of rat portal vein preparations pre-contracted with phenylephrine 10 -4 M. On the other hand, no pharmacological effects were observed in preparations not pre-contracted. The observed histamine-induced relaxing effect was absent in preparations pre-contracted with KCl (120 mM) or in the presence of depolarizing nutritive solution. However, the histamine-induced relaxation was still present in the endothelium-removed preparations. The histamine-induced relaxation also was not prevented by astemizole (10 -6 M, 10 -5 M and 10 -4 M), cimetidine (10 -5 M, 10 -4 M and 10 -3 M) or thioperamide (10 -6 M, 10 -5 M and 10 -4 M), selective antagonists H 1, H 2 and H 3, respectively. The presence of L-NAME 10 -4 M or L-NAME 10 -4 M plus indomethacin 10 -5 M also did not prevent the histamine-induced relaxation observed in rat portal vein. Thus, the histamine-induced relaxation observed in rat portal vein appears to involve a non-endothelial hyperpolarizing mechanism independent of H 1, H 2 and H 3 receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relaxant effect of the methyl ester of rosuvastatin was evaluated on aortic rings from male Wistar rats (250-300 g, 6 rats for each experimental group) with and without endothelium precontracted with 1.0 µM phenylephrine. The methyl ester presented a slightly greater potency than rosuvastatin in relaxing aortic rings, with log IC50 values of -6.88 and -6.07 M, respectively. Unlike rosuvastatin, the effect of its methyl ester was endothelium-independent. Pretreatment with 10 µM indomethacin did not inhibit, and pretreatment with 1 mM mevalonate only modestly inhibited the relaxant effect of the methyl ester. Nω-nitro-L-arginine methyl ester (L-NAME, 10 µM), the selective nitric oxide-2 (NO-2) inhibitor 1400 W (10 µM), tetraethylammonium (TEA, 10 mM), and cycloheximide (10 µM) partially inhibited the relaxant effect of the methyl ester on endothelium-denuded aortic rings. However, the combination of TEA plus either L-NAME or cycloheximide completely inhibited the relaxant effect. Inducible NO synthase (NOS-2) was only present in endothelium-denuded aortic rings, as demonstrated by immunoblot with methyl ester-treated rings. In conclusion, whereas rosuvastatin was associated with a relaxant effect dependent on endothelium and hydroxymethylglutaryl coenzyme A reductase in rat aorta, the methyl ester of rosuvastatin exhibited an endothelium-independent and only slightly hydroxymethylglutaryl coenzyme A reductase-dependent relaxant effect. Both NO produced by NOS-2 and K+ channels are involved in the relaxant effect of the methyl ester of rosuvastatin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nearly 50% of patients with heart failure (HF) have preserved LV ejection fraction, with interstitial fibrosis and cardiomyocyte hypertrophy as early manifestations of pressure overload. However, methods to assess both tissue characteristics dynamically and noninvasively with therapy are lacking. We measured the effects of mineralocorticoid receptor blockade on tissue phenotypes in LV pressure overload using cardiac magnetic resonance (CMR). Mice were randomized to l-nitro-ω-methyl ester (l-NAME, 3 mg/mL in water; n=22), or l-NAME with spironolactone (50 mg/kg/day in subcutaneous pellets; n=21). Myocardial extracellular volume (ECV; marker of diffuse interstitial fibrosis) and the intracellular lifetime of water (τic; marker of cardiomyocyte hypertrophy) were determined by CMR T1 imaging at baseline and after 7 weeks of therapy alongside histological assessments. Administration of l-NAME induced hypertensive heart disease in mice, with increases in mean arterial pressure, LV mass, ECV, and τic compared with placebo-treated controls, while LV ejection fraction was preserved (>50%). In comparison, animals receiving both spironolactone and l-NAME (l-NAME+S) showed less concentric remodeling, and a lower myocardial ECV and τic, indicating decreased interstitial fibrosis and cardiomyocyte hypertrophy (ECV: 0.43 ± 0.09 for l-NAME versus 0.25 ± 0.03 for l-NAME+S, P<0.001; τic: 0.42 ± 0.11 for l-NAME groups versus 0.12 ± 0.05 for l-NAME+S group). Mice treated with a combination of l-NAME and spironolactone were similar to placebo-treated controls at 7 weeks. Spironolactone attenuates interstitial fibrosis and cardiomyocyte hypertrophy in hypertensive heart disease. CMR can phenotype myocardial tissue remodeling in pressure-overload, furthering our understanding of HF progression.