35 resultados para myrcene
Resumo:
ß-Myrcene (MYR) is a monoterpene found in the oils of a variety of aromatic plants including lemongrass, verbena, hop, bay, and others. MYR and essential oils containing this terpenoid compound are used in cosmetics, household products, and as flavoring food additives. This study was undertaken to investigate the effects of MYR on fertility and general reproductive performance in the rat. MYR (0, 100, 300 and 500 mg/kg) in peanut oil was given by gavage to male Wistar rats (15 per dose group) for 91 days prior to mating and during the mating period, as well as to females (45 per dose group) continuously for 21 days before mating, during mating and pregnancy, and throughout the period of lactation up to postnatal day 21. On day 21 of pregnancy one-third of the females of each group were submitted to cesarean section. Resorption, implantation, as well as dead and live fetuses were counted. All fetuses were examined for external malformations, weighed, and cleared and stained with Alizarin Red S for skeleton evaluation. The remaining dams were allowed to give birth to their offspring. The progeny was examined at birth and subsequently up to postnatal day 21. Mortality, weight gain and physical signs of postnatal development were evaluated. Except for an increase in liver and kidney weights, no other sign of toxicity was noted in male and female rats exposed to MYR. MYR did not affect the mating index (proportion of females impregnated by males) or the pregnancy index (ratio of pregnant to sperm-positive females). No sign of maternal toxicity and no increase in externally visible malformations were observed at any dose level. Only at the highest dose tested (500 mg/kg) did MYR induce an increase in the resorption rate and a higher frequency of fetal skeleton anomalies. No adverse effect of MYR on postnatal weight gain was noted but days of appearance of primary coat, incisor eruption and eye opening were slightly delayed in the exposed offspring. On the basis of the data presented in this paper the no-observed-adverse-effect level (NOAEL) for toxic effects on fertility and general reproductive performance can be set at 300 mg of ß-myrcene/kg body weight by the oral route.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigated the role of chemoreception in the host selection and oviposition behaviour of Helicoverpa armigera in the laboratory using five cotton genotypes and synthetic volatile terpenes. Female moths oviposited on substrates treated with methanol, ethanol, acetone and pentane extracts of leaves, squares and flowers of the cotton genotypes. Phytochemicals soluble in pentane were the most efficient in eliciting oviposition behaviour. In a two-way bioassay, pentane extracts of leaves or squares of a Multiple Host-plant Resistance genotype (MHR11), Deltapine commercial (DP90), and Smith Red Leaf (SRL) received significantly more eggs than solvent-treated controls. Extracts of squares of the native genotype Gossypium nelsonii did not receive more eggs. Females preferred DP90 and MHR11 to SRL and G. nelsonii. Female moths also laid more eggs on pentane extracts of MHR11 flowers than MHR11 leaves from preflowering, early flowering and peak-flowering plants. In a flight chamber, female moths used olfactory cues at short range to mediate oviposition and discrimination between host plants. Egg-laying, mated females were attracted at a distance (1.5 m) to volatile compounds released by whole plants and odours emanating from filter papers treated with synthetic volatile terpenes. Individually, the terpenes did not stimulate any significant oviposition response. However, there was a significant oviposition response to a mixture of equal volumes of the terpenes (trans-beta-caryophyllene, alpha-pinene, beta-pinene, myrcene, beta-bisabolol, and alpha-humulene). Conversely, antennectomised (moths with transected antennae), egg-laying, mated females did not stimulate any significant oviposition response. The significance of these findings in relation to H. armigera hostplant selection are discussed.
Resumo:
Microencapsulation of lemon oil was undertaken by kneading with beta-cyclodextrin, at a beta-cyclodextrin to lemon oil ratio of 88:12 (w/w). The resulting paste samples of the complex were vacuum- or spray-dried. Ten selected lemon oil flavor volatiles (alpha-pinene, sabinene, beta-pinene, beta-myrcene, limonene, gamma-terpinene, terpinolene, linalool, neral, and geranial) in the complex were analyzed periodically after 1, 2, 5, 10, 15, 20, and 30 min of kneading time. The results indicated that the levels of these volatiles were not significantly different (P > 0.05) irrespective of mixing time or type of the drying (vacuum- or spray-drying) used. An optimum mixing time was found to be 15 min, at which time the maximum encapsulation of lemon oil (97.7 mg/g of beta-cyclodextrin) was obtained in the complex powder.
Resumo:
Objectives The purpose of the present work was to characterize file pharmacological profile of different L. alba chemotypes and to correlate the obtained data to the presence of chemical constituents detected by phytochemical analysis. Methods Essential oils from each L. alba chemotype (LP1-LP7) were characterized by gas chromatography-mass spectrometry (GC-MS) and extracted non-volatile compounds were analysed by HPLC and GC-MS. The anticonvulsant actions of file extracted compounds were studied in pentylenetetrazole-induced clonic seizures in mice and then effect oil motor coordination was studied using the rota-rod test in rats. The synaptosomes and synaptic membranes of the rats were examined for the influence of LP3 chemotype extract oil GABA uptake and binding experiments. Key findings Behavioural parameters encompassed by the pentylenetetrazole test indicated that 80% ethanolic extracts of LP1, LP3 and LP6 L. alba chemotypes were more effective as anticonvulsant agents. Neurochemical assays using synaptosomes and synaptic membranes showed that L. alba LP3 chemotype 80% ethanolic extract inhibited GABA uptake and GABA binding ill a dose-dependent manner. HPLC analysis showed that LP1, LP3 and LP6 80% ethanolic extracts presented a similar profile of constituents, differing from those seen in LP2, LP4, LP5 and LP7 80% ethanolic extracts, which exhibited no anticonvulsant effect. GC-MS analysis indicated the Occurrence of phenylpropanoids in methanolic fractions obtained from LP1, LP3 and LP6 80% ethanolic extracts and also the accumulation of inositol and flavonoids in hydroalcoholic fractions. Conclusions Our results suggest that the anticonvulsant properties shown by L. alba might be correlated to the presence of it complex of non-volatile Substances (phenylpropanoids, flavonoids and/or inositols), and also to the volatile terpenoids (beta-myrcene, citral, limonene and carvone), which have been previously Validated as anticonvulsants.
Employment of the side product of biodiesel production in the formation of surfactant like molecules
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Zanthoxylum rhoifolium Lam is a plant popularly used as antimicrobial, for malaria and inflammatory treatment. The essential oil of Z. rhoifolium was extracted and its cytotoxic effects against HeLa (human cervical carcinoma), A-549 (human lung carcinoma), HT-29 (human colon adenocarcinoma), Vero (monkey kidney) cell lines and mice macrophages were evaluated. Some of the terpenes of its essential oil (ß-caryophyllene, alpha-humulene, alpha -pinene, myrcene and linalool) were also tested to verify their possible influence in the oil cytotoxic activity. The results obtained permitted to confirm that the essential oil is cytotoxic against tumoral cells (CD50 = 82.3, 90.7 and 113.6 µg/ml for A-549, HeLa e HT-29 cell lines, respectively), while it did not show cytotoxicity against non-tumoral cells (Vero and mice macrophages). Thus, the essential oil from Z. rhoifolium leaves seems to present a possible therapeuthic role due to its selective cytotoxic activity against tumoral cell lines.
Resumo:
The objective of this work was to evaluate if corn plants damaged by the lesser cornstalk borer (Elasmopalpus lignosellus) larvae release volatile organic compounds capable of attracting the egg parasitoid Trichogramma pretiosum. The treatments consisted of plants subjected to harm caused by E. lignosellus larvae, plants subjected to mechanical damage, and undamaged plants. The parasitoid was more attracted by the volatiles released by the insect damaged plants than to those released by undamaged corn plants, after 24 and 72 hours. The volatiles (Z)-3-hexenyl acetate, β-pinene, β-myrcene, (E)-4,8-dimethylnona-1,3,7-triene, and benzothiazole were released in significantly larger quantities by damaged plants. Volatiles released by corn plants damaged by E. lignosellus larvae may act as an indirect defense, attracting by T. pretiosum.
Resumo:
The chemical composition of the essential oils from leaves and fruits of Triphasia trifolia was analyzed by GC-FID and GC-MS. The major constituents of oil obtained from leaves were sabinene (35.4%) and myrcene (34.1%), while the prevalent compounds in oil from fruits were sabinene (37.2%), beta-pinene (23.95) and gamma-terpinene (16.3%). Both oils showed moderate antimicrobial activity. The fruit decoction was also investigated leading to the isolation of the coumarins isopimpinelin, (R)-byakangelicin and (S)-mexoticin. From leaves were isolated the coumarins (R)-byakangelicin, aurapten, (S)-mexoticin, isosibiricin, isomerazin and coumurrayin and the flavonoid vitexin. All coumarins showed cholinesterase inhibition on TLC tests.
Resumo:
The identification of the chemical compounds of the essential oil was performed with a gas chromatograph coupled to a mass spectrometer. The oil was left in the presence and absence of light and submitted to different temperatures to evaluate its stability. The yields of the major compounds were evaluated every fifteen days. Citral and myrcene, the major compounds of the essential oil, were degraded over time in both the presence and absence of light, but temperature only influenced the degradation of myrcene.
Resumo:
The essential oils of the leaves and twigs from Zanthoxylum syncarpum Tull. were examined by GC/MS and GC-FID. Variation in the oil composition relative to the harvesting time was also described. The major components in the leaves oils were limonene (23.1-47.3%) and myrcene (4.8-10.8%). In the oils of twigs, the main components were ar-curcumene (12.8-18.1%), E-β-farnesene (9.1-9.7%) and β-caryophyllene (9.2-9.3%). This paper describes for the first time the composition of the essential oil of the twigs from Z. syncarpum.
Resumo:
Chemical composition of leaf volatiles of Rosmarinus officinalis and Baccharis dracunculifolia cultured in Southeast of Brazil has been characterized by GC/MS after simultaneous distillation-extraction. The main components in volatiles of these species showed in common α-pinene, myrcene, 1,8 cineole and camphor. Camphor was the major component among volatiles of B. dracunculifolia and R. officinalis with concentrations exceeding 25%. B. dracunculifolia volatiles possessed more sesquiterpenes (21.4%) than R. officinalis (16.7%), such as caryophyllene (1.9%) and α-humulene (0.4%). Lower concentrations of nerolidol and spathulenol were achieved in volatiles of B. dracunculifolia. Considering both species, there was a predominance of monoterpenes.
Resumo:
The volatile compositions from organic and conventional passion fruit pulps produced in Brazil were investigated. The pulps were also physicochemically characterized. The volatile compounds from the headspace of the passion fruit pulp were stripped to a Porapak Q trap for 2 hours; they were eluted with 300 µL of dichloromethane, separated by gas chromatography/flame ionisation detection and identified through gas chromatography/mass spectrometry. Both pulps conformed to the requirements of the Brazilian legislation, indicating they were suitable to be industrialized and consumed. A total of 77 compounds were detected in the headspace of the passion fruit pulps - 60 of which were identified, comprising 91% of the total chromatogram area. The major compounds were the following: ethyl butanoate, 52% and 57% of the total relative area of the chromatogram for the organic and conventional passion fruit pulps, respectively; ethyl hexanoate, 22% and 9%, respectively; and hexyl butanoate, 2% and 5%, respectively. The aroma of the organic passion fruit pulp is mainly related to the following volatile compounds: ethyl hexanoate, methyl hexanoate, β-myrcene and D-limonene. The conventional passion fruit pulp presented methyl butanoate, butyl acetate, hexanal, 1-butanol, butyl butanoate, trans-3-hexenyl acetate, cis-3-hexen-1-ol, butyl hexanoate, hexyl butanoate, 3-hexenyl butanoate and 3-hexenyl hexanoate as the main volatile compounds for aroma.
Resumo:
Simultaneous Distillation-Extraction (SDE) and headspace-solid phase microextraction (HS-SPME) combined with GC-FID and GC-MS were used to analyze volatile compounds from plum (Prunus domestica L. cv. Horvin) and to estimate the most odor-active compounds by application of the Odor Activity Values (OAV). The analyses led to the identification of 148 components, including 58 esters, 23 terpenoids, 14 aldehydes, 11 alcohols, 10 ketones, 9 alkanes, 7 acids, 4 lactones, 3 phenols, and other 9 compounds of different structures. According to the results of SDE-GC-MS, SPME-GC-MS and OAV, ethyl 2-methylbutanoate, hexyl acetate, (E)-2-nonenal, ethyl butanoate, (E)-2-decenal, ethyl hexanoate, nonanal, decanal, (E)-β-ionone, Γ-dodecalactone, (Z)-3-hexenyl acetate, pentyl acetate, linalool, Γ-decalactone, butyl acetate, limonene, propyl acetate, Δ-decalactone, diethyl sulfide, (E)-2-hexenyl acetate, ethyl heptanoate, (Z)-3-hexenol, (Z)-3-hexenyl hexanoate, eugenol, (E)-2-hexenal, ethyl pentanoate, hexyl 2-methylbutanoate, isopentyl hexanoate, 1-hexanol, Γ-nonalactone, myrcene, octyl acetate, phenylacetaldehyde, 1-butanol, isobutyl acetate, (E)-2-heptenal, octadecanal, and nerol are characteristic odor active compounds in fresh plums since they showed concentrations far above their odor thresholds.
Resumo:
There is growing evidence of a substantial decline in pollinators within Europe and North America, most likely caused by multiple factors such as diseases, poor nutrition, habitat loss, insecticides, and environmental pollution. Diesel exhaust could be a contributing factor to this decline, since we found that diesel exhaust rapidly degrades floral volatiles, which honey bees require for flower recognition. In this study, we exposed eight of the most common floral volatiles to diesel exhaust in order to investigate whether it can affect volatile mediated plant-pollinator interaction. Exposure to diesel exhaust altered the blend of common flower volatiles significantly: myrcene was considerably reduced, β-ocimene became undetectable, and β-caryophyllene was transformed into its cis-isomer isocaryophyllene. Proboscis extension response (PER) assays showed that the alterations of the blend reduced the ability of honey bees to recognize it. The chemically reactive nitrogen oxides fraction of diesel exhaust gas was identified as capable of causing degradation of floral volatiles.