957 resultados para multivariate analysis of variance
Resumo:
O conceito de superfície geomórfica permite uma interligação entre os diferentes ramos da ciência do solo, tais como geologia, geomorfologia e pedologia. Esta associação favorece a compreensão da distribuição espacial dos solos na paisagem, e torna possível compreender o comportamento dos atributos do solo, que estão principalmente relacionadas com a estratigrafia e formas do relevo. Assim, este estudo visa à aplicação da estatística multivariada para categorizar superfícies geomórficas em uma litossequência arenito-basalto, de modo a fornecer uma base para a avaliação do solo em áreas afins. A área de estudo está localizada no município de Pereira Barreto, São Paulo, Brasil. A área escolhida possui 530 hectares, onde foram localizadas e mapeadas três superfícies geomórficas (I, II e III). Na área, 134 amostras foram coletadas nas profundidades de 0,0-0,2 m e 0,8-1,0 m, foram determinados os conteúdos de areia, silte e argila, pH em CaCl2, conteúdo de MO, P, Ca, Mg, K, Al e H+Al. Com base nos resultados, foram realizadas a análise univariada e multivariada de variância, clusters e principal componente, a fim de comparar as três superfícies geomórficas. A análise estatística univariada dos atributos do solo não foi eficiente na identificação das três superfícies geomórficas. Utilizando-se os atributos físicos e químicos do solo, as técnicas estatísticas multivariada permitiram à separação dos três grupos de corpos naturais do solo que foram equivalentes as três superfícies geomórficas mapeadas. Estes resultados são interessantes, pois demonstram a viabilidade da utilização de classificação numérica das superfícies geomórficas para ajudar no mapeamento de solo.
Resumo:
Accurate monitoring of degradation levels in soils is essential in order to understand and achieve complete degradation of petroleum hydrocarbons in contaminated soils. We aimed to develop the use of multivariate methods for the monitoring of biodegradation of diesel in soils and to determine if diesel contaminated soils could be remediated to a chemical composition similar to that of an uncontaminated soil. An incubation experiment was set up with three contrasting soil types. Each soil was exposed to diesel at varying stages of degradation and then analysed for key hydrocarbons throughout 161 days of incubation. Hydrocarbon distributions were analysed by Principal Coordinate Analysis and similar samples grouped by cluster analysis. Variation and differences between samples were determined using permutational multivariate analysis of variance. It was found that all soils followed trajectories approaching the chemical composition of the unpolluted soil. Some contaminated soils were no longer significantly different to that of uncontaminated soil after 161 days of incubation. The use of cluster analysis allows the assignment of a percentage chemical similarity of a diesel contaminated soil to an uncontaminated soil sample. This will aid in the monitoring of hydrocarbon contaminated sites and the establishment of potential endpoints for successful remediation.
Multivariate analyses of variance and covariance for simulation studies involving normal time series
Resumo:
Photocopy.
Resumo:
A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.
Resumo:
The aim of the present study was to evaluate the effect of soil characteristics (pH, macro- and micro-nutrients), environmental factors (temperature, humidity, period of the year and time of day of collection) and meteorological conditions (rain, sun, cloud and cloud/rain) on the flavonoid content of leaves of Passiflora incarnata L., Passifloraceae. The total flavonoid contents of leaf samples harvested from plants cultivated or collected under different conditions were quantified by high-performance liquid chromatography with ultraviolet detection (HPLC-UV/PAD). Chemometric treatment of the data by principal component (PCA) and hierarchic cluster analyses (HCA) showed that the samples did not present a specific classification in relation to the environmental and soil variables studied, and that the environmental variables were not significant in describing the data set. However, the levels of the elements Fe, B and Cu present in the soil showed an inverse correlation with the total flavonoid contents of the leaves of P. incarnata.
Resumo:
This study aimed to examine the sensory characteristics of the grains of 21 cultivars of Coffea arabica L. and Coffea canephora Pierre from the essays of genetic improvement of EPAMIG, located in Patrocinio Municipality, Minas Gerais State, where they were collected through cloths stripping method and washed. Subsequently to dry (11 to 12% moisture b.u.), we obtained the coffee designated as natural. The evaluated varieties were: Acaia Cerrado MG 1474; Bourbon Vermelho DATERRA; Catigua MG 1; Catigua MG 2; Catual Amarelo IAC 62; Catuai Vermelho IAC 15; H 419-3-1-4-2; H 419-6-2 -5-2; H 419-6-2-5-3; H 419-6-2-7-3 Vermelho; H 493-1-2-10; H 514-7-10-1 Vermelho; H 514-7-10-6; H 515-4-2-2; H 518-3-6-1; Icatu Amarelo IAC 3282; Mundo Novo 379-19; Mundo Novo TAO 376-4; Rubi MG 1192; Sacramento MG 1 and Topazio MG 1190, from 2005/2006 and 2006/2007 seasons. The cultivars according to the first principal component with notes above 80 points, regarded as superior drink according to attributes with the highest scores (flavor, sweetness, balance, acidity, clean drink, and aspect) were: Catigua MG2, Rubi MG 1192, 514-7-10-6 H, H 419-3-1-4-2, H 419-6-2-5-2, 493-1-2-10 H, H 514-7-10-1 Vermelho, Catigua MG1, Sacramento MG1, 419-6-2-5-3 H, H 515-9-2-2 and Catuai Amarelo IAC 62.
Resumo:
This article develops a weighted least squares version of Levene's test of homogeneity of variance for a general design, available both for univariate and multivariate situations. When the design is balanced, the univariate and two common multivariate test statistics turn out to be proportional to the corresponding ordinary least squares test statistics obtained from an analysis of variance of the absolute values of the standardized mean-based residuals from the original analysis of the data. The constant of proportionality is simply a design-dependent multiplier (which does not necessarily tend to unity). Explicit results are presented for randomized block and Latin square designs and are illustrated for factorial treatment designs and split-plot experiments. The distribution of the univariate test statistic is close to a standard F-distribution, although it can be slightly underdispersed. For a complex design, the test assesses homogeneity of variance across blocks, treatments, or treatment factors and offers an objective interpretation of residual plot.
Resumo:
Associations between socio-demographic factors, water contact patterns and Schistosoma mansoni infection were investigated in 506 individuals (87% of inhabitants over 1 year of age) in an endemic area in Brazil (Divino), aiming at determining priorities for public health measures to prevent the infection. Those who eliminated S. mansoni eggs (n = 198) were compared to those without eggs in the stools (n = 308). The following explanatory variables were considered: age, sex, color, previous treatment with schistosomicide, place of birth, quality of the houses, water supply for the household, distance from houses to stream, and frequency and reasons for water contact. Factors found to be independently associated with the infection were age (10-19 and > 20 yrs old), and water contact for agricultural activities, fishing, and swimming or bathing (Adjusted relative odds = 5.0, 2.4, 3.2, 2.1 and 2.0, respectively). This suggests the need for public health measures to prevent the infection, emphasizing water contact for leisure and agricultural activities in this endemic area.
Resumo:
This study aims to optimize the water quality monitoring of a polluted watercourse (Leça River, Portugal) through the principal component analysis (PCA) and cluster analysis (CA). These statistical methodologies were applied to physicochemical, bacteriological and ecotoxicological data (with the marine bacterium Vibrio fischeri and the green alga Chlorella vulgaris) obtained with the analysis of water samples monthly collected at seven monitoring sites and during five campaigns (February, May, June, August, and September 2006). The results of some variables were assigned to water quality classes according to national guidelines. Chemical and bacteriological quality data led to classify Leça River water quality as “bad” or “very bad”. PCA and CA identified monitoring sites with similar pollution pattern, giving to site 1 (located in the upstream stretch of the river) a distinct feature from all other sampling sites downstream. Ecotoxicity results corroborated this classification thus revealing differences in space and time. The present study includes not only physical, chemical and bacteriological but also ecotoxicological parameters, which broadens new perspectives in river water characterization. Moreover, the application of PCA and CA is very useful to optimize water quality monitoring networks, defining the minimum number of sites and their location. Thus, these tools can support appropriate management decisions.
Resumo:
A cross-sectional case-control study on the association between the reduced work ability and S. japonicum infection was carried out in a moderate endemic area for schistosomiasis japonica in the southern part of Dongting lake in China. A total of 120 cases with reduced work ability and 240 controls paired to the case by age, sex, occupation and without reduced work ability, participated in the study. The mean age for individuals was 37.6 years old (21-60), the ratio of male: female was 60:40, the prevalence of S. japonicum in the individuals was 28.3%. The results obtained in this study showed that the infection of S. japonicum in case and control groups was 49.2% (59/120) and 17.9% (43/240), respectively. Odds ratio for reduced work ability among those who had schistosomiasis was 4.34 (95%), confidence interval was 2.58-7.34, and among those who had S. japonicum infection (egg per gram > 100) was up to 12.67 (95%), confidence interval was 3.64-46.39. After odds ratio was adjusted by multiple logistic regression, it was confirmed that heavier intensity of S. japonicum infection and splenomegaly due to S. japonicum infection were the main risk factors for reduced work ability in the population studied.
Resumo:
Analysis of variance is commonly used in morphometry in order to ascertain differences in parameters between several populations. Failure to detect significant differences between populations (type II error) may be due to suboptimal sampling and lead to erroneous conclusions; the concept of statistical power allows one to avoid such failures by means of an adequate sampling. Several examples are given in the morphometry of the nervous system, showing the use of the power of a hierarchical analysis of variance test for the choice of appropriate sample and subsample sizes. In the first case chosen, neuronal densities in the human visual cortex, we find the number of observations to be of little effect. For dendritic spine densities in the visual cortex of mice and humans, the effect is somewhat larger. A substantial effect is shown in our last example, dendritic segmental lengths in monkey lateral geniculate nucleus. It is in the nature of the hierarchical model that sample size is always more important than subsample size. The relative weight to be attributed to subsample size thus depends on the relative magnitude of the between observations variance compared to the between individuals variance.
Resumo:
Irrigation with treated domestic sewage wastewater (TSE) is an agricultural practice to reduce water requirements of agroecossystems and the nutrient load impact on freshwaters, but adverse effects on soil chemical (salinization, sodification, etc.) and soil physical properties (alteration in soil porosity and hydraulic conductivity, etc.) have been reported. This study aimed to define some relationships among these changes in an Oxisol using multivariate analysis. Corn (Zea mays L.) and sunflower (Helianthus annuus L.) were grown for two years, irrigated with TSE. The following soil properties were determined: Ca2+; Mg2+; Na+; K+ and H + Al contents, cationic exchangeable capacity (CEC), sum of bases (SB), base saturation (V), texture (sand, silt and clay), macro-, micro-, and cryptoporosity (V MA, V MI and V CRI), water content at soil saturation (θS) and at field capacity (θFC), residual water content (θR), soil bulk density (d s), water dispersed clay (WDC) and saturated hydraulic conductivity (K SAT). Factor analysis revealed the following six principal factors: Fine Porosity (composed of Na+; K+; WDC, θR, θRFC, and V CRI); Large Porosity (θS, d s, V MA, Vs); Soil CEC (Ca2+; Mg2+; CEC, SB, V); Soil Acidity (H + Al); and Soil Texture (factors 5 and 6). A dual pore structure appears clearly to the factors 1 and 2, with an apparent relationship between fine porosity and the monovalent cations Na+ and K+. The irrigation (with potable sodic tap water or sewage wastewater) only had a significant effect on Fine Porosity and Large Porosity factors, while factors 3 and 4 (Soil CEC and Soil Acidity) were correlated with soil depth. The main conclusion was a shift in pore distribution (large to fine pores) during irrigation with TSE, which induces an increase of water storage and reduces the capacity of drainage of salts.
Resumo:
Plant growth analysis presents difficulties related to statistical comparison of growth rates, and the analysis of variance of primary data could guide the interpretation of results. The objective of this work was to evaluate the analysis of variance of data from distinct harvests of an experiment, focusing especially on the homogeneity of variances and the choice of an adequate ANOVA model. Data from five experiments covering different crops and growth conditions were used. From the total number of variables, 19% were originally homoscedastic, 60% became homoscedastic after logarithmic transformation, and 21% remained heteroscedastic after transformation. Data transformation did not affect the F test in one experiment, whereas in the other experiments transformation modified the F test usually reducing the number of significant effects. Even when transformation has not altered the F test, mean comparisons led to divergent interpretations. The mixed ANOVA model, considering harvest as a random effect, reduced the number of significant effects of every factor which had the F test modified by this model. Examples illustrated that analysis of variance of primary variables provides a tool for identifying significant differences in growth rates. The analysis of variance imposes restrictions to experimental design thereby eliminating some advantages of the functional growth analysis.